

COMMUNICATION PROTOCOL

Original

EN

IF 400 P Profibus-DP Interface Board for Ionization Gauge Controller IMG 400

About this Document	This document describes the functionality and programming of the Profibus in face IMG 400, designed to be used with the Ionisation Gauge Controller IMG								
	For safety information and technical data of the controller, please refer to the IMG 400 operating manual ($\rightarrow \square$ [3]).								
Product Identification	In all communications with Pfeiffer Vacuum, please specify the information on the product nameplate (position of product nameplate \rightarrow illustration on \mathbb{B} 41). Pfeiffer Vacuum, D-35614 Asslar Typ: IF 400 P No: PT441495-T								
Validity	This document applies to products with part number PT 441 495 -T The part number (No:) can be taken from the product nameplate.								

Semiconductor Equipment and Materials International, California

SEMI®

BG 5530 BEN / A (2019-07) IF400P.cp

Trademark

Contents

About this Document Product Identification Validity Trademark	2 2 2 2
1 Introduction	4
2 Hardware, Pin Assignment	4
 3 Installation 3.1 Installing the IF 400 P Interface Board 3.2 Preparing the IMG 400 for Profibus Operation 	5 5 6
 4 Software 4.1 Device Model 4.2 General Device Data 4.2.1 Data Transmission Rate 4.2.2 Device Address 4.2.3 Ident Number 4.2.4 Configuration Data 4.2.5 User Parameter 4.3 Data Exchange Mode 4.3.1 Data Transmission 4.3.2 Structure of the Cyclic Data Telegrams in Data Exchange Mode 4.3.3 Cyclic Message Telegrams 4.4 Block Model 4.4.1 Device Block (DB) 4.4.2 Sensor Analog Input Function Blocks (FB) (Channel 1 4) (Table 3) 4.4.3 Trip Function Blocks (Relays 1 7) (Table 4) 4.4 Transducer Block Channel 1 and 2 Hot Cathode Ion Gauge (IONI) 4.4.5 Transducer Block Channel 3 and 4 (Type A Transducers, Heat Transfer Vacuum Gauges) 4.4.6 Transducer Block Channel 3 and 4 (Type B Transducers, Diaphragm Gauges) 	7 8 8 8 8 8 9 9 10 13 14 16 21 24 26 28 29
5 Maintenance 5.1 Installing / Replacing the Profibus Firmware EPROM	31 31
 6 Appendix A: Gauge – Channel Configuration B: Definitions C: Block Type D: Example Using the Inputs and Outputs E: Examples Parameter Channel F: Board Layout G: Literature 	32 36 38 38 39 41 42

For cross-references within this document, the symbol ($\rightarrow \square$ XY) is used; for cross-references to further documents listed under "Literature", use is made of the symbol ($\rightarrow \square [Z]$).

1 Introduction

The communication interface IF 400 P allows to access process and parameter data of the IMG 400 via the Profibus-DP. As a second line of communication, a set of five relays is made available on the board.

Profibus-DP definitions and further information $\rightarrow \square$ [1], [2].

2 Hardware, Pin Assignment

The IF 400 P hardware is defined in two parts.

- Profibus interface providing the Profibus functionality and the parameter mapping between the IMG 400 parameter protocol and Profibus.
- Relays section (5 on board relays) and attached auxiliary circuitry is included in the design of the IF 400 P.

Profibus interface connector

The interface connector on the rear of the IF 400 P has the following pin assignment:

Relay connector

The relay connector on the rear of the IF 400 P has the following pin assignment:

Installation 3

À

Skilled personnel

The IF 400 P interface option is installed and configured by the enduser.

3.1 Installing the IF 400 P Interface Board

Procedure

Set the device address on the IF 400 P board ($\rightarrow B$).

4

Insert IF 400 P board.

Thighten screws on the rear panel of the board.

Connect Profibus cable (and relays cable, if applicable) and secure locking screws of the connector.

For correct operation, ensure that the screws of the plug-in modules are tightened.

3.2 Preparing the IMG 400 for Profibus Operation

For Profibus operation, the serial interface inside the IMG 400 has to be configured to communicate with the IF 400 P option. The following interface parameter settings are required in connection with the IF 400 P:

Parameter	Value
Number of data bits	8
Parity bit	none
Stop bit	1
Data transmission rate	9600 Baud

The appropriate programming procedure is described in 🛄 [3].

4.1 Device Model

The diagram shown below exhibits the general structure of the implementation.

		ſ	Measuren	nent Ap	plicatio	on IMG	400			
Slot 0 Device Block (DB)	1 2 TB1 Hot Cathode, EXT, BAG SAI FB1 (FB1) PV PV	3 DI/ Hea Trans (FB	A, aster FB3 SAI FB4 DIA, Heat Transfer FB3 SAI FB4 (FB4) PV	TRIP FB1 (FB5) Status	CRIP FB2 (FB6) Status	7 TRIP FB3 (FB7) Status	8 TRIP FB4 (FB8) Status	9 TRIP FB5 (FB9) <u>Status</u>	10 (FB10) Status	TRIP FB7 (FB11) Status
	Ρ	rofib	us Firmwa	are (Co	mmuni	cation,	IF 400	P)		
				Prof	fibus					
Where:	TBx DB	= =	Transdu Device I	icer Blo Block	ock x				→ 🖹 2	6, 28, 29 → 🖹 16
	Cathode	=	Hot Cat	hode io	nizatio	on gau	ge			→ □ [3]
EXI = Extractor gauge									•	→ ⊑ [3] → 🖾 [3]
	DIA	=	Capacit	ance D	iaphra	gm ga	uge			→ 🛄 [3]
	Transfer	=	Heat Tra	ansfer (gauge	(Piran	i)			→ 🛄 [3]
	SAI FBX PV	=	Process	Analog Value	input	runcti	01) BIOC	ж х		$\rightarrow \blacksquare 21$ $\rightarrow \blacksquare 21$

Trip FBx	=	Trip Function Block x

Measurement channels

The four measurement channels (input channels) of the IMG 400 can be connected to different types of gauges simultaneously, however, not every type can be connected to any channel (\rightarrow Appendix A).

As the type of gauge is only known at the start-up time of the software

the actual type of each transducer block is determined at that time.

The four measurement channels (input channels) are mapped into the respective transducer and function blocks.

Switching functions (Trip point functions)

A total of seven switching functions / Trip points with associated relays are available.

- 2 Relays located on the main board of the IMG 400 (Relays 1 and 2, → □ [3]

Relays are represented by one trip point function block each.

→ 🖹 24

4.2 General Device Data

4.2.1	Data Transmission Rate	The device supports all data transmission rates (up to 12 MBaud) specified in IEC 61158 / IEC 61784 ($\rightarrow \square$ [2]). The data transmission rate used by the Profibus master is automatically detected by the device.
4.2.2	Device Address	For an unambiguous identification of the device on the bus, a device address is required.
		The device address is set by the user via the dedicated 8 bit address switches located on the IF 400 P board (\rightarrow Appendix F).
		Additionally, if the address switch is set to 126Dec, the device address may be set by a Profibus master (Set-Slave-Address). The address switches of the IF 400 P board can only be adjusted while the board is not installed in the IMG 400.
4.2.3	Ident Number	The Ident Number assigned to the IMG 400 by the PNO ($\rightarrow \square$ [1]).

The Ident Number assigned to the IMG 400 by the PNO (\rightarrow [1]).

Device	Ident Number (hex)
IMG 400	0x0947

4.2.4 Configuration Data

Depending on the standard telegrams used ($\rightarrow \square$ 13), the following configuration data have to be transmitted to the device during the configuration phase:

Configuration	Standard telegram Master \Rightarrow Slave	Standard telegram Slave \Rightarrow Master	Configuration data (hex)
1	_	5	0x45, 0x88, 0x05, 0x03, 0x03, 0x03, 0x03
2		6	0x45, 0x90, 0x05, 0x08, 0x08, 0x08, 0x08
3	1	5	0xC7, 0x81, 0x88, 0x05, 0x05, 0x05, 0x03, 0x03, 0x03, 0x03
4	1	6	0xC7, 0x81, 0x90, 0x05, 0x05, 0x05, 0x08, 0x08, 0x08, 0x08
5	2	11	0xC7, 0x87, 0x90, 0x0A, 0x0A, 0x05, 0x03, 0x03, 0x03, 0x03
6	2	12	0xC7, 0x87, 0x98, 0x0A, 0x0A, 0x05, 0x08, 0x08, 0x08, 0x08
7	3	11	0xC9, 0x89, 0x90, 0x0A, 0x05, 0x05, 0x0A, 0x05, 0x03, 0x03, 0x03, 0x03
8	3	12	0xC9, 0x89, 0x98, 0x0A, 0x05, 0x05, 0x0A, 0x05, 0x08, 0x08, 0x08, 0x08
9	_	201	0x47, 0x91, 0x05, 0x03, 0x03, 0x03, 0x03, 0x0A, 0x0A, 0x0A
10	_	202	0x47, 0x99, 0x05, 0x08, 0x08, 0x08, 0x08, 0x0A, 0x0A, 0x0A
11	1	201	0xC9, 0x81, 0x91, 0x05, 0x05, 0x05, 0x03, 0x03, 0x03, 0x03, 0x0A, 0x0A
12	1	202	0xC9, 0x81, 0x99, 0x05, 0x05, 0x05, 0x08, 0x08, 0x08, 0x08, 0x0A, 0x0A
13	2	203	0xC9, 0x87, 0x99, 0x0A, 0x0A, 0x05, 0x03, 0x03, 0x03, 0x03, 0x0A, 0x0A
14	2	204	0xC9, 0x87, 0xA1, 0x0A, 0x0A, 0x05, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0A, 0x0A
15	3	203	0xCB, 0x89, 0x99, 0x0A, 0x05, 0x05, 0x0A, 0x05, 0x03, 0x03, 0x03, 0x03, 0x0A, 0x0A
16	3	204	0xCB, 0x89, 0xA1, 0x0A, 0x05, 0x05, 0x0A, 0x05, 0x08, 0x08, 0x08, 0x08, 0x0A, 0x0A

4.2.5 User Parameter

The user data part of the parameter string contains a data unit information. The unit is coded as described on 🖹 22 (ID 22).

4.3 Data Exchange Mode

4.3.1 Data Transmission

The reading and writing operations defined in the Profibus are based on a slot index address scheme. In the IMG 400, all device functions are organized in the following blocks:

- A device block describing all organizational parameters of the device (serial number, manufacturer, software version, status, exceptions ...)
- An Analog Sensor Function Block describing the function of the pressure presentation
- An Analog Sensor Transducer Block describing the physical interface between the IMG 400 and the process (emission current ...)
- Trip Function Blocks describing all relevant parameters, status and functionality
 of switching functions (setpoints ...).

Each block is assigned to a separate slot. The exact assignment $Block \Rightarrow Slot \Rightarrow Index$ is described in section "Block Model" ($\rightarrow B$ 14).

The Device Block is assigned to Slot 0, the Analog Transducer Function Blocks to Slot 1 \dots 4 and the Trip Point Function Blocks to Slot 5 \dots 11.

There are 254 indices per slot. The indices can have a width of 255 bytes. All values that can be accessed via Profibus have to be mirrored to one of these slots / indices.

The parameters are generally numbered in ascending order, starting with index 16. Services such as "Degas On" or "Full scale" are numbered in descending order, starting with index 15.

Block, slot and index assignment

4.3.2 Structure of the Cyclic Data Telegrams in Data Exchange Mode

In Data Exchange mode, the DP master class 1 cyclically transmits data from and to all slaves that are connected to the bus.

In this document, data transmitted from the slave to the master are called "input data" and data transmitted from the master to the slave are called "output data".

The input and output data of the IMG 400 have two logic parts:

- 1) the parameter channel
- 2) the process data channel

There are a number of standard telegrams, consisting of:

- a) the parameter channel only
- b) the process data channel only
- c) both, the parameter and process data channel

The parameter channels allow masters to access device specific parameters that are not part of the normal cyclic data telegram.

Input data

The input data (transmitted by the IMG 400) consist of the 8 bytes of the parameter channel (if there is a parameter channel in the standard telegram) and of $9 \dots 26$ bytes of process data depending on the selected standard telegram.

Low													High		
		B	/te					Byte							
1 2	3	4	5	6	7	8	9	10	11	12	13	14	15		
	Par	amete	er char	nnel			Process data and status								
PKE	ID	res.		P١	νe										
Where: PKE = Parameter Signature V					ture V	'alue	Rea and	ading 1 defii	or wi	iting of the	comm e slot	and			
ID = Index							Ind Mo	ex to del")	be re	ad (-	→ "Blo	ck			
	res.	=	reserv	/ed											
PWE = Process Value						Val	ue to	be re	ad or	writte	en				

Output data

The output data (transmitted by the master) consist of 8 bytes of the parameter channel or, if there is no parameter channel in the standard telegram, of 0 bytes.

Low							High					
Byte												
1	2	3 4 5 6 7 8										
	Parameter channel											
Pł	PKE ID res. PWE											

Parameter Channel

The structure of the parameter channel is described in the table below.

The parameter channel (called PKW Interface hereinafter) consists of 8 bytes.

Low							High			
Byte										
1	2	3	4	5	6	7	8			
Pł	٢E	ID	res.		P۷	VE				

The PKW Interface allows reading and writing of slave parameters with a maximum data length of 4 bytes. Strings cannot be read.

The slave generates exactly one response per instruction transmitted by the master. The instruction and response cannot be blocked. This means that exactly one instruction per output telegram can be transmitted to the slave and that exactly one response per input telegram can be transmitted to the master. 4 bytes of actual data can thus be transmitted at a time.

PKE Parameter, Signature Value

Higl	h														Low
	Bit position														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		٩K			re	es.					S	lot			
				1											
Whe	ere:	Bi	ts	Me	Meaning										
		15	. 12	AK	= Ins	tructi	on/re	spons	se sig	natur	е				
		11.	8	Res	serve	d									
7 0 Define the slot from which data are read or onto which a value is to be written															

Instruction signature

In Master \Rightarrow Slave communication, the AK field contains the instruction signature of the master.

In Slave \Rightarrow Master communication, the AK field contains the instruction signature of the slave.

AK	Function Master ⇒ Slave (Instruction signature)	AK normal	Function Slave ⇒ Master (Response signature)	AK error
0	No instruction	0	No response	
1	Read parameter value	1	Transmit parameter value (word)	7 ¹⁾
		2	Transmit parameter value (double word)	
		11	Transmit parameter value (byte)	
2	Write parameter value (data type: word)	1	Transmit parameter value (word)	7 ¹⁾
3	Write parameter value (data type: double word)	2	Transmit parameter value (double word)	7 1)
10	Write parameter value (data type: byte)	11	Transmit parameter value (byte)	7 1)

¹⁾ Instruction cannot be executed (error code)

On the left of the table, the instruction signatures of the master are listed according to their function. On the right of the table, the corresponding normal responses (AK Normal) and error codes (AK Error) transmitted by the slave are listed.

Instruction - response sequence

- 1) The master transmits an instruction to the slave and repeats that instruction until it receives a response from the slave.
- 2) The slave keeps transmitting the response to the instruction until the master transmits a new instruction.
- The master marks the end of the first instruction cycle by setting AK to zero. Only after that, a new instruction/response cycle may be started.

PWE Parameter, Process Value

The PWE represents the data element to be transmitted.

If a byte is to be transmitted, that byte has to be in position 8 of the parameter channel.

Integers are transmitted with bytes 7 and 8. Double integer and float values are transmitted with bytes 5 \dots 8.

Error Code (Error Message)

In the event of a transmission error (AK response signature = 7), the slave transmits an error code in byte positions 7 and 8 (data type: INT16).

Error code	r code Meaning (Semantic)	
0	Undefined slot	
1	Parameter not changeable	
2	Lower or upper value range limit overflow	
3	Index error	
5	Data type error	
17	Instruction not allowed in this state	
18	Other errors	
201	Already in requested state	
202	Object state conflict	

The following diagram shows an example of a data request from a master to an IMG 400 via parameter channel.

4.3.3 Cyclic Message Telegrams

The message telegrams listed below are implemented in the IMG 400. They can be selected according to requirements. When selecting a message telegram, ascertain what output format of the measured value (integer/float) is required and whether a parameter channel is needed or not. The IMG 400 can also be operated in such a way that the master does not transmit any output data to the slave.

Standard Telegram	Master ⇔ Slave	Octets	Meaning	Data origin
1	$M \Rightarrow S$	0	Transition Command	TBx (ID 14) ⁴⁾
		1	Transition Command Value for Hot Ion Gauges	TBx (ID 14) ⁴⁾
2	$M \Rightarrow S$	0 7	Parameter Channel	
3	$M \Rightarrow S$	0 7	Parameter Channel	
		8	Transition Command	TBx (ID 14) ⁴⁾
		9	Transition Command Value for Hot Ion Gauges	TBx (ID 14) ⁴⁾
5	$S \Rightarrow M$	0	Exception Status	DB (ID 26) ¹⁾
		1 8	Multi Process Value	FB (ID 19) ²⁾
6	$S \Rightarrow M$	0	Exception Status	DB (ID 26) ¹⁾
		1 16	Multi Process Value	FB (ID 19) ³⁾
11 $S \Rightarrow M \qquad 0 \dots 7$ 8		0 7	Parameter Channel	
		8	Exception Status	DB (ID 26) ¹⁾
		9 16	Multi Process Value	FB (ID 19) ²⁾
12	12 $S \Rightarrow M$ 0 7 Parameter Channel		Parameter Channel	
		8	Exception Status	DB (ID 26) ¹⁾
		9 24	Multi Process Value	FB (ID 19) ³⁾

Standard Telegrams

Proprietary Telegrams

Proprietary Telegram	Master ⇔ Slave	Octets	Meaning	Data origin
201	$S \Rightarrow M$	0	Exception Status	DB (ID 26) 1)
		1 8	Multi Process Value	FB (ID 19) ²⁾
		9 10	Channel Status	DB (ID 204) 1)
		11 17	Trip Relays 1 … 7	FB (ID 21) → table 4,
202	$S \Rightarrow M$	0	Exception Status	DB (ID 26) 1)
		1 16	Multi Process Value	FB (ID 19) ³⁾
		17 18	Channel Status	DB (ID 204) 1)
		19 25	Trip Relays 1 7	FB (ID 21) → table 4,
203	$S \Rightarrow M$	0 7	Parameter Channel	
		8	Exception Status	DB (ID 26) ¹⁾
		9 16	Multi Process Value	FB (ID 19) ²⁾
		17 18	Channel Status	DB (ID 204) 1)
		19 25	Trip Relays 1 7	FB (ID 21) → table 4,
204	$S \Rightarrow M$	0 7	Parameter Channel	
		8	Exception Status	DB (ID 26) 1)
		9 24	Multi Process Value	FB (ID 19) ³⁾
		25 26	Channel Status	DB (ID 204) 1)
		27 33	Trip Relays 1 … 7	FB (ID 21) → table 4, ≧ 24

¹⁾ \rightarrow Device Block overview, table 1, \square 16.

- $^{2)}$ UINT16 (4 × 2 bytes), \rightarrow Sensor Analog Input Function Block, table 3, ${\ensuremath{{}^{\square}}}$ 21
- ³⁾ Float, (4 × 4 bytes), \rightarrow Sensor Analog Input Function Block, table 3, \cong 21
- ⁴⁾ UINT8, (2 × 1 byte), \rightarrow Transducer Block, arrow 26

4.4 Block Model

Data to the IMG 400 can be transmitted by means of a number of communication protocols and corresponding masters. Profibus defines a master class 1 as normal control unit of the slave (typically a PLC) and a master class 2 as configuration and service unit.

- MS0 Cyclic data traffic between master class 1 and slave
- MSAC1 Acyclic data traffic between master class 1 and slave
- MSAC2 Acyclic data traffic between master class 2 and slave

With the IMG 400, all functions that are made available by the interface via Profibus are organized in blocks. Access to the individual parameters of the blocks is possible via acyclic services or, for byte, integer and float values, also in cyclic data traffic via the parameter channel.

Block types

The following block types are defined in the IMG 400.

Device Block The Device Block contains all data that are required for describing the device and handling its state (status of device state machine).

Transducer Block The physical, process specific functions or interfaces between the IMG 400 and the process such as current and voltage values are represented in transducer blocks

The following transducer blocks are implemented:

- Transducer Block Channel 1 and 2 Hot cathode ion gauges
- Transducer Block Channel 3 and 4 Type A transducers, heat transfer vacuum gauges Type B transducers, diaphragm gauges

Function Block

Application specific values such as pressure values that result from or can be calculated from the values of the transducer block are represented in the function blocks.

The following function blocks are implemented:

- Sensor Analog Input Function Block 1 ... 4 (channel 1 ... 4)
- Trip Function Block 5 ... 11 (relays 1 ... 7)

4.4.1 Device Block (DB)

Device Block overview (Table 1)

(Slot 0)

The following table lists the services and parameters integrated in the Device Block $(\rightarrow \text{Appendix B for definitions and abbreviations}).$

ID	Name	Structure	Data type	Bytes	Access	Store
15	Device Block State	Simple	Unsigned8	1	1_R/W 2_R/W	
16	Block Type ID	Simple	Octet string	4	1_R 2_R	Ν
25	Device State	Simple	Unsigned8	1	1_R 2_R	V
26	Exception Status	Simple	Unsigned8	1	0_XI 1_R 2_R	V
203	Key Lock	Simple	Unsigned8	1	1_R/W 2_R/W	V
204	Channel Status	Simple	Octet string	2	0_XI 1_R 2_R	V
205	Reset Error Condition	Simple	Unsigned8	1	1_W 2_W	V

The Block Type ID parameter contains the ID of the block as defined in \square [1]). Currently defined Block Type IDs are listed in Appendix C.

The parameter contains the overall state of the device as determined by internal events and the commands sent by the master to invoke the Device Block State Command. The possible states are described under the explanation of Device Block State.

Parameter value	State
0	Undefined
1	Self testing
2	Idle
3	Self test exception
4	Executing
5	Abort
6	Critical fault
100	Init

Exception Status (ID 26)

Block Type

Device State

(ID 16)

(ID 25)

The Exception Status describes the alarm and warning statuses of the gauge in an "Expanded error output format" (Bit 7 = "1"), $\rightarrow \square$ [1].

A difference is made between warnings and errors.

Alarms and errors are divided into three groups (\rightarrow sections "Exception Detail Alarm" and "Exception Detail Warning" for details):

ALARM / Warning Device Common	For errors that occur independently of the type of device used, e.g. supply error, RAM or EEPROM error.
ALARM / Warning Device Specific	For device specific errors, e.g. Hot cathode power supply error.
ALARM / Warning Manufacturer Specific	For errors defined by the manufacturer that are not mentioned in the standard e.g. power supply error

In each of the above groups, there are several error or warning conditions. The individual fields are presented in the "Exception Detail Alarm" and "Exception Detail Warning". If an error message occurs in "Exception Detail Alarm" or "Exception Detail Warning", the corresponding bit is set in the Exception Status. Therefore, if bits 0 ... 6 of the Exception Status are on "0" there is no warning message pending.

If a bit is set, the actual error can be read in the corresponding group.

The Exception Status is output in cyclic data and informs on the current error status using only one byte. If an error occurs, the current error status can be read via acyclic services or in cyclic data exchange via the parameter channel. This ensures that while the current error status is always available in the cyclic data, no unnecessary data overhead is transmitted.

Bit	Function	Trigger
0	ALARM/device-common	At least one of bits 0, 2, 3, 4, or 5 in table 3 (Exception Detail 0) is \neq 0 or a serial communication alarm occurred.
1	ALARM/device-specific	The sensor alarm bytes (ID 103, Transducer 1, 2, 3 or 4) are set to some value ≠ 0.
2	ALARM/manufacturer-specific	A power supply error or warning has occurred. A ionization gauge supply error or warning has occurred.
4	WARNING/device-common	At least one of bits 0, 2, 3, 4, or 5 in table 3 (Exception Detail 0) is \neq 0 or a serial communication alarm occurred.
5	WARNING/device-specific	The Status Extension (ID 102) in Transducer 1, 2, 3 or 4 is set to some value \neq 0.
6	WARNING/manufacturer-specific	A power supply error or warning has occurred. An ionization gauge supply error or warning has occurred.
7	Extended Format	Bit seven is always set.

Keylock (ID 203)

This parameter allows the Profibus user to enable or disable the keys on the IMG 400 concerning Profibus accessible parameters.

Keylock	Coding
Off	0
Para_Lock	1
Profi_Lock	2
Full Lock	3

(For detailed information on keylock $\rightarrow \square$ [3].)

The parameter contains the status of each measurement channel. It may be used by the controller application to determine the validity of each channel value. The value of each channel nibble is determined by the respective bit values in the Status Extension Byte of each channel Transducer Block.

Bit	Channel	Meaning	Value
0	1	Reading Invalid	→ 🖹 26 (ID 102)
1		Overrange	
2		Underrange	
3		Reserved	0
4	2	Reading Invalid	→ 🖹 26 (ID 102)
5		Overrange	
6		Underrange	
7		Reserved	0
8	3	Reading Invalid	→ 🖹 26 (ID 102)
9		Overrange	
10		Underrange	
11		Reserved	0
12	4	Reading Invalid	→ 🖹 26 (ID 102)
13		Overrange	
14		Underrange	
15		Reserved	0

Common Exception Detail 1 (table 2)

Reset Error Condition (ID 205)

The parameter allows the Profibus user to reset alarm and warning states.

Bit	Function	Description
0	Reset general power supply alarms	Power supply err
1	Reset general power supply warnings	Power supply warnings
2	Reset hot cathode gauge supply alarms	Hot cathode gauge supply alarms
3	Reset hot cathode gauge supply warnings	Hot cathode gauge supply alarms
4	Reset all general power supply alarms and hot cathode gauge supply alarms and switch on power supplies of channel 3 and 4 again	
5	Reset error flag	Error flag was set by: • $p > p_{max.}$ • $p > p_{user}$ • EMIS key pressed (emergency off) on IMG 400 (\rightarrow [] [3]). (\rightarrow also tables 5 and 6)
6	not used	_
7	Reset all alarms and warnings and clear error buffer	(Alarms and warnings \rightarrow description of bit 5) If no valid error exists, the IMG 400 display will no longer show "ERROR xx" (\rightarrow [] [3]).

Where: bit value 0 = no action bit value 1 = reset command Device Block State (ID 15)

The IMG 400 behaves as described in the status diagram below.

State diagram

After the start, the device independently runs through the INIT and SELFTESTING status and eventually changes to the IDLE status (if there is no error) or to the SELFTEST EXCEPTION status (if there is a device error).

When data traffic is taken up, a difference has to be made between cyclic and acyclic data traffic.

Cyclic data traffic

As soon as cyclic data interchange is taken up, the device automatically changes to the EXECUTING status.

Acyclic data traffic

In acyclic data traffic, a START service has to be transmitted to bring the device to the EXECUTING status (write 0x04 into ID 15).

Transition table

Transition	Start state	End state
0	Start	INIT
1	SELFTESTING	IDLE
2	SELFTESTING	SELFTEST EXCEPTION
3	SELFTEST EXCEPTION	SELFTESTING
4	ОК	ABORT
5	ABORT	IDLE
8	IDLE	EXECUTING
9	NORMAL	CRITICAL FAULT
10	EXECUTING	IDLE
13	RUNNING, ABORT, CRITICAL FAULT	INIT
14	INIT	SELFTESTING

Device status table

State	Coding	Description
INIT	100	Block initialization, waiting for AYT response from IMG 400.
SELFTESTING	1	ROM- and RAM test, evaluation internal communi- cation and EEPROM communication.
SELFTEST EXCEPTION	3	Internal communication problem discovered during self test.
IDLE	2	All blocks and device hardware and software have been initialized and have successfully completed self testing. The device is ready for cyclic data transfer.
EXECUTING	4	Device is executing (e.g., it is performing its device- specific function) its functions according to the pur- pose of the device.
ABORT	5	Device Block instance is in an aborted state. The device-specific function are not performed properly.
CRITICAL FAULT	6	The Device Block (and device) are in a fault state from which there is no recovery. The results of the device-specific functions are bad.

Set	Members	Description
NORMAL	INIT, SELFTESTING, SELFTEST EXCEPTION, IDLE, EXECUTING, ABORT	The set of normal states
RUNNING	SELFTESTING, SELFTEST EXCEPTION, IDLE, EXECUTING,	Set of states where device is initialized and no critical faults are detected.
OK	IDLE, EXECUTING	Set of states where device is tested and all internal conditions for execution are given.

Device Block, State Command

There are a number of special commands for bringing the device into a status it does not automatically go to.

ID value	Name	Description
0	Inactive	No action
1	Reset	Used for reinitializing the device.
2	Abort	Brings the device to the ABORT status.
3	Recover	Used for bringing the device from the ABORT status into the Recovered State IDLE.
4	Execute	Brings the unit to the EXECUTING status, in which the gauge functions normally. As soon as cyclic data traffic is initialized, this status command is executed automatically.
5	Stop	Brings the gauge to the IDLE status.
6	Perform Diagnostic	Stops the running activity and starts SELFTEST.

4.4.2 Sensor Analog Input Function Blocks (FB) (Channel 1 ... 4) (Table 3)

(Slots 1	4 = channels	1	4))
----------	--------------	---	----	---

				1		
ID	Name	Structure	Data Type	Bytes	Access	Store
15	Block Adjust Command	Record	\rightarrow Semantics		2R/W	
16	Block Type ID	Record	\rightarrow Semantics		2R	N
19	ProcessValue (PV)	Simple	According Parameter Data Type	-	0_XI 1_R 2_R	D
20	Status	Simple	Unsigned8	1	1_R 2_R	D
21	Data Type	Simple	Unsigned8	1	2_R 2_W	Ν
22	Data Units	Simple	Unsigned16	2	2_R	Ν
23	Reading Valid	Simple	Boolean	1	1_R 2_R	D
24	Full Scale	Simple	According Data Type value (parameter 21)	_	1_R 2_R	N
39	Safe State	Simple	Unsigned8	1	1_R 1_W 2_R 2_W	N
40	Safe Value	Simple	According Data Type value (parameter 21)	-	1_R 1_W 2_R 2_W	Ν
44	Overrange	Simple	According Data Type value (parameter 21)	_	1_R 2_R	N
45	Underrange	Simple	According Data Type value (parameter 21)	_	1_R 2_R	N

Block Type ID (ID 16)

Process Value (PV) (ID 19)

Status (ID 20) The Block Type ID parameter contains the unique ID (2) of the block as defined in \square [1]). Currently defined Block Type IDs are listed in Appendix C.

The process value contains the measurement value of the Transducer Block dedicated to the channel in the chosen data unit. If the device is not in state EXECUTING (\rightarrow ID 25, Device Block) the Process value is set to the value specified by the Safe State (\rightarrow ID 39).

The parameter is always set to "0".

The data type can be changed from Float to Integer16. After startup it is set to the value stored in the EEPROM.

Data Type	Coding
Integer16	3
Float	8

Changing the data type of one instance sets the data types of all instances to the same value.

The default factory setting is to "Float".

If the device is in cyclic data exchange, the data type cannot be changed. The first change option is with the settings of the configuration data (choice of standard telegram) during the startup of the cyclic communication.

This method overrules any setup made before, in order to give the priority to cyclic data exchange. The acyclic change may take place using MSAC2 services $\rightarrow 14$ and (1) [1]).

The data unit states the measurement unit of the measurement values.

The device supports the data units described below:

Data Unit	Coding
COUNTS	0x1001
Torr	0x1301
mTorr (Micron)	0x1302
hPa	0x1308
Pa (Pascal)	0x1309

For safety reasons the data unit may not be changed if the device is in cyclic data exchange with a DP/V0 master. Changing the data unit has to be done with User Parameter during the configuration phase.

The conversion rules from the basic unit hPa are listed below:

Data Unit Conversion

Data units can be converted using the rules below:

COUNTS	=	4000 × [log ₁₀ (PV _{hPa} / hPa) + 12.5]
PV _{Torr}	=	0.75006168 PV _{hPa}
PV _{Micron}	=	10 ³ × PV _{Torr}
PV _{Pa}	=	100 × PV _{hPa}

The parameter contains "1" if the device state is set to "EXECUTING" (Device Block, ID 25), the exception status contains no manufacturer warning or alarm and both transducer blocks contain no sensor alarm (ID 103). In all other cases it must be set to "0".

The parameter contains the valid maximum value of the attached gauge in terms of the currently selected data unit and data type (\rightarrow appendix of \square [3]).

Data Unit (ID 22)

Reading Valid (ID 23)

Full Scale (ID 24) Safe State (ID 39)

When the device is not in the EXECUTING status (ID 25, Device Block) or if there is a device error, a value defined by Safe State is output as process value. You can select among:

- "0"
- Full scale
- Last valid value
- Safe Value (user-definable in ID 40)

Safe State	Coding	PV behavior
Zero	0	The Process Value (measured value ID 19) is set to 0.
Full Scale	1	The Process Value (measured value ID 19) is set to the full scale value (ID 24).
Hold Last Value	2	The Process Value is set to the last valid value obtained in the EXECUTING status.
Use Safe Value	3	The Process Value (measured value ID 19) is set to the Safe Value (ID 40).

Safe Value (ID 40)

Overrange (ID 44)

Underrange (ID 45)

Analog Input Block Adjust Command (ID 15) The Safe Value is the value output with the Process Value parameter (ID 19) when an error occurs or the device goes to the NOT EXECUTING status. If this value is set to zero, it will remain on zero when the data unit is changed.

Contains the highest valid PV depending on the attached gauge in terms of the unit specified by the parameter "Data Unit" (\rightarrow appendix of [] [3]).

Contains the lowest valid PV depending on the attached gauge in terms of the unit specified by the parameter "Data Unit" (\rightarrow appendix of \square [3]).

Byte	Name	Structure	Data Type	Bytes	Access
0	State Command	Simple	UINT8	1	1/2_R/W
1	Target Value	Simple	UINT8	1	1 / 2_R/W

State Command	Name	Description
0	Zero Adjust	Used to calibrate the measurement channel of this instance depending on the transmitted target value. Differing from the profile definition the target value is set as explained in the next table.

Target Value	Description
0	Disable offset (only channel 3 and 4 with CDG sensor)
1	Start new offset calculation and enable offset (only for loni and CDG sensor).

4.4.3 Trip Function Blocks (Relays 1 ... 7) (Table 4)

Block Type ID

Low Trip Point

Low Trip Enable

(ID 16)

(ID 19)

(ID 20) Status

(ID 21)

(ID 24)

Hysteresis

1	Slots	5	11	=	relav	19	1	7١	
	SIULS	J	 	_	ICIA	v5		 ()	

The Trip relays 1 and 2 are located on the IMG 400 main board. Relays 3 ... 7 are located on the IF 400 P ($\rightarrow \square$ 5 and \square [3]).

ID	Name	Struct	Data Type	Bytes	Access	Store
16	Block Type ID	Record	\rightarrow Semantics		2R	
19	Low Trip Point	Simple	According Data Type value (ID 29)	_	1_R/W 2_R/W	Ν
20	Low Trip Enable	Simple	Boolean	1	1_R/W 2_R/W	Ν
21	Status	Simple	Unsigned8	1	0_XI 1_R 2_R	V
24	Hysteresis	Simple	According Data Type value (ID 29)	-	1_R/W 2_R/W	Ν
27	Analog Input Sensor Function Block Instance	Simple	Unsigned8	1	1_R/W 2_R/W	Ν
28	Data Unit	Simple	Unsigned16	2	2_R	Ν
29	Data Type	Simple	Unsigned8	1	2_R	Ν
201	Low Trip Upper Threshold	Simple	According Data Type value (ID 29)	1	1_R/W 2_R/W	Ν

The Block Type ID parameter contains the unique ID (17) of the block as defined in \square [1]). Currently defined Block Type IDs are listed in Appendix C.

The Value below which a trip point condition will occur.

Relays are activated if pressure falls below the trip point.

Enables or disables the Low Trip Point function.

The state of the relay connected to this instance.

Determines the amount by which the Sensor Analog Instance value must recover to clear a trip point condition. It can be set directly by writing to the parameter. If the parameter "Low Trip Upper Threshold" is set, it can be recalculated as follows:

Analog Input Sensor Function Block Instance (ID 27)

Defines the reference to the measurement channel assigned to this instance.

Measurement channel	Value
1	1
2	2
3	3
4	4

Data Unit (ID 28)

The device supports the data units described below:

Unit	Value
COUNTS	0x1001
Torr	0x1301
mTorr (Micron)	0x1302
hPa	0x1308
Pa (Pascal)	0x1309

For safety reasons the data unit may not be changed if the device is in cyclic data exchange with a DP/V0 master. Changing the data unit has to be done with User Parameter during the configuration phase.

The conversion rules from the basic unit hPa are listed below:

Data Unit Conversion

Data units can be converted using the rules below:

COUNTS	=	$4000 \times [\log_{10} (PV_{hPa} / hPa) + 12.5]$					
PV _{Torr}	=	0.75006168 PV _{hPa}					
PV _{Micron}	=	10 ³ × PV _{Torr}					
PV _{Pa}	=	100 × PV _{hPa}					

Data Type (ID 29)

The data type can be changed from Float to Integer16. After startup it is set to the value stored in the EEPROM.

Data Type	Coding
Integer16	3
Float	8

Changing the data type of one instance sets the data types of all instances to the same value.

The default factory setting is to "Float".

If the device is in cyclic data exchange, the data type cannot be changed. The first change option is with the settings of the configuration data (choice of standard telegram) during the startup of the cyclic communication.

This method overrules any setup made before, in order to give the priority to cyclic data exchange. The acyclic change may take place using MSAC2 services $\rightarrow 14$ and $\square [1]$.

Low Trip Upper Threshold (ID 201)

Determines upper threshold above which the Sensor Analog Instance Value must recover to clear a trip point condition. It can be set directly by writing to the parameter. If the parameter "Hysteresis" is set it is recalculated as follows:

ID 201 = ID 19 + ID 24

4.4.4 Transducer Block Channel 1 and 2 Hot Cathode Ion Gauge (IONI)

Block Type (ID 101)

Status Extension (ID 102)

The transducer is invoked regardless of the attached gauge for channel
1 and 2.

ID	Name	Structure	Data Type	Bytes	Access	Store	Initial value
14	Hot Cathode Block State Command	REC		2	1_R/W 2_R/W		FALSE
101	Block-Type	Simple	Octet- String	4	2_R		16
102	Status Extension	Simple	UINT8	1	1_R 2_R	V	0
103	Sensor Alarm	Struct	Array of 2 Bytes	2	1_R 2_R	V	0
104	Sensor Warning	Struct	Array of 2 Bytes	2	1_R 2_R	V	0
105	Emission Status	Simple	BOOL	1	1_R/W 2_R/W	V	0
107	Emission Current	Simple	Float	4	1_R/W 2_R/W	NV	0
110	Degas Status	Simple	BOOL	1	1_R 2_R	V	0

The Block Type parameter contains the unique ID (16) of the block as defined in \square [1]). Currently defined Block Type IDs are listed in Appendix C.

The parameter contains the following information:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	F	Reserved	ł		Underrange Exceeded ¹⁾	Overrange Exceeded ²⁾	Reading Invalid ³⁾

¹⁾ Underrange Exceeded:

The parameter is set to "1", if the sensor value is below the parameter Underrange (ID 45) of the AI FB of the concerned channel (1 or 2).

²⁾ Overrange Exceeded:

The parameter is set to "1", if the sensor is above the parameter Overrange (ID 44) of the AI FB of the concerned channel (1 or 2).

³⁾ Reading invalid:

The parameter is set to "1", if the Reading Valid parameter (ID 23) of the AI FB of the concerned channel (1 or 2) is set to "0" or if the measurement channel represented by this transducer:

- is not connected to a gauge
- has not switched its gauge on.

Sensor Alarm
(ID 103)
(Table 5)

The parameter contains the following information:

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Byte 0	0	0	0	0	0	0	0	0
Byte 1	0	0	0	Environment Failure ³⁾	Overpressure Emission off ²⁾	0	Electronics Failure ¹⁾	0

- ¹⁾ The parameter is set to "1", if the byte value of the Manufacturer Exception Alarm Detail 2 or 3 is ≠ "0".
- ²⁾ The parameter is set to "1", if pressure p > pmax. or p > puser (→ □ [3]). In case of an Emission Off caused by overpressure, the user has to acknowledge the reason for the Emission Off situation. The acknowledgement is carried out by the service "Clear Emission Off Alarm". After receiving this service, the device changes to the Emission Off state (→ table "Supported Commands", □ 28).
- ³⁾ The parameter is set to "1", if the emission has been switched off via keyboard of the IMG 400 (→□ [3]).

The parameter contains the following information:

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Byte 0	0	0	0	0	0	0	0	0
Byte 1	0	0	0	0	Pressure too high for Degas ²⁾	0	Electronics Warning ¹⁾	0

¹⁾ The parameter is set to "1", if the byte value of the Manufacturer Exception Warning Detail 2 or 3 is ≠ "0".

²⁾ The parameter is set to "1", if the pressure rises above the specified maximum pressure allowed to start a degas cycle. If the pressure falls below the specified value, bit 3 is reset to "0".

Emission Status		Emission Status		Value		
(ID 105)		Off		0		
		On		1		
Emission Current	Em	ission Current [mA]	Value		
(ID 107)		0		0		
		0.1		1		
		1		2		
		1.6		3		
	10			4		
		45		5		
		90		6		
Degas Status		Degas Status		Value		
(ID 110)		Off		0		
		On		1		
Hot Cathode Block State	ID	Name	Struct	Data Type	Bytes	Access
Command (ID 14)	14	Hot Cathode Block State Command	Record	\rightarrow below	2	1_R/W 2_R/W
		Transition	simple	UINT8	1	

Command Value

Sensor Warning (ID 104) (Table 6)

Store

Ν

Range

 \rightarrow below

 \rightarrow below

Supported Commands

Transition Command	Name	Description
0	NOP	No action
1	Set Degas State	Activates / deactivates degas mode according to the target value:
		Target Value: $0 \Rightarrow$ switch degas off
		Target Value: 1 \Rightarrow switch degas on
		The command will return an error if the pressure is not below:
		 1x10⁻⁴ hPa for BAG gauges
		 1x10⁻⁵ hPa for EXT gauges
		Degas will be terminated automatically by the device itself, if not stopped before by the "switch degas off" command.
3	Set	Turns emission on or off according to the target value:
	Emission	• Target value: $0 \Rightarrow$ switch filament off
	State	• Target value: 1 \Rightarrow switch filament on
4	Clear	Resets the sensor alarm parameter: Overpressure Off
	Emission	Value
		• Target value: $0 \Rightarrow$ no action
		• Target value: 1 \Rightarrow clear Emission Off Alarm.

4.4.5 Transducer Block Channel 3 and 4 (Type A Transducers, Heat Transfer Vacuum Gauges)

The Transducer Block is invoked if a gauge of the type heat transfer vacuum gauge (e.g. TPR) could be identified on the concerned channel.

ID	Name	Structure	DataType	Bytes	Access	Store
101	Block Type	Simple	Octet-String	4	2_R	
102	Status Extension	Simple	UINT8	1	1_R 2_R	V
103	Sensor Alarm	Struct	Array of Byte 2	2	1_R 2_R	V
104	Sensor Warning	Struct	Array of Byte 2	2	1_R 2_R	V

Block Type (ID 101)

The Block-Type parameter contains the unique ID (13) of the block as defined in \square [1]). Currently defined Block Type IDs are listed in Appendix C.

Status Extension (ID 102)

The parameter contains the following information:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	F	Reserved	ł		Underrange Exceeded ¹⁾	Overrange Exceeded ²⁾	Reading Invalid ³⁾

- ¹⁾ Underrange Exceeded: The parameter is set to "1", if the sensor value is below the parameter Underrange (ID 45) of the AI FB of the concerned channel (3 or 4).
- ²⁾ Overrange Exceeded: The parameter is set to "1", if the sensor value is above the parameter Overrange (ID 44) of the AI FB of the concerned channel (3 or 4).
- ³⁾ Reading invalid: The parameter is set to "1", if the Reading Valid parameter (ID 23) of the AI FB instance 3 is set to "0" or if the measurement channel represented by this transducer
 - is not connected to a gauge
 - has not switched its gauge on.

The parameter contains the following information:

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Byte 0	0	0	0	0	0	0	0	0
Byte 1	0	0	0	0	0	0	Electronics Failure ¹⁾	0

¹⁾ The parameter is set to "1", if bit 0 or bit 1 of the Manufacturer Exception Alarm Detail 1 byte is set to "1".

Sensor Warning (ID 104)

Sensor Alarm

(ID 103)

The parameter contains the following information:

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Byte 0	0	0	0	0	0	0	0	0
Byte 1	0	0	0	0	0	0	Electronics Warning ¹⁾	0

- ¹⁾ The parameter is set to "1", if bit 0 or bit 1 of the Manufacturer Exception Warning Detail 1 byte is set to "1".
- 4.4.6 Transducer Block Channel 3 and 4 (Type B Transducers, Diaphragm Gauges)

The Transducer Block is invoked, if a gauge of type CMR (Diaphragm gauge) was identified on the concerned channel.

ID	Name	Structure	DataType	Bytes	Access	Store	Initial Value
101	Block Type	Simple	Octet- String	4	2_R		14
102	Status Extension	Simple	UINT8	1	1_R 2_R	V	0
103	Sensor Alarm	Struct	Array of 2 Bytes	2	1_R 2_R	V	0
104	Sensor Warning	Struct	Array of 2 Bytes	2	1_R 2 R	V	0

Block Type (ID 101)

The Block-Type parameter contains the unique ID (14) of the block as defined in \square [1]). Currently defined Block Type IDs are listed in Appendix C.

Status Extension (ID 102)

The parameter contains the following information:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	F	Reserved	ł		Underrange Exceeded ¹⁾	Overrange Exceeded ²⁾	Reading Invalid ³⁾

- ¹⁾ Underrange Exceeded: The parameter is set to "1", if the sensor is below the parameter Underrange (ID 45) of the AI FB of the concerned channel (3 or 4).
- ²⁾ Overrange Exceeded: The parameter is set to "1", if the sensor value is above the parameter Overrange (ID 44) of the AI FB of the concerned channel (3 or 4).
- ³⁾ Reading invalid:

The parameter is set to "1", if the Reading Valid parameter (ID 23) of the AI FB of the concerned channel is set to "0" or if the measurement channel represented by this transducer

- is not connected to a gauge
- has not switched its gauge on.

The parameter contains the following information:

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Byte 0	0	0	0	0	0	0	0	0
Byte 1	0	0	0	0	0	0	Electronics Failure ¹⁾	0

¹⁾ The parameter is set to "1", if bit 0 or bit 1 of the Manufacturer Exception Alarm Detail 1 byte is set to "1".

The parameter contains the following information:

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Byte 0	0	0	0	0	0	0	0	0
Byte 1	0	0	0	0	0	0	Electronics Warning ¹⁾	0

¹⁾ The parameter is set to "1", if bit 0 or bit 1 of the Manufacturer Exception Warning Detail 1 byte is set to "1".

Sensor Alarm (ID 103)

Sensor Warning (ID 104)

5 Maintenance

5.1 Installing / Replacing the Profibus Firmware EPROM

If a new firmware becomes available, the corresponding EPROM on the IF 400 P can be changed by the end-user.

The transmitted telegrams are located, without exception, within the following frameworks:

The plug-in board may only be installed by persons who have suitable technical training and the necessary experience or who have been instructed by the enduser of the product.

6 Appendix

A: Gauge – Channel Configuration

Permitted channel configurations

Channel \rightarrow	1	2	3	4
Configuration				
↓				
1	BAG			
2	EXT			
3		EXT		
4		BAG		
5			CMR	
6			TPR	
7				TPR
8				CMR
9	BAG	BAG		
10	BAG	EXT		
11	EXT	BAG		
12	EXT	EXT		
13	BAG		TPR	
14	BAG		CMR	
15	EXT		TPR	
16	EXT		CMR	
17	BAG			TPR
18	BAG			CMR
19	EXT			TPR
20	EXT			CMR
21		BAG	TPR	
22		BAG	CMR	
23		EXT	TPR	
24		EXT	CMR	
25		BAG		TPR
26		BAG		CMR
27		EXT		TPR
28		EXT		CMR
29	BAG	BAG	TPR	
30	BAG	BAG	CMR	
31	BAG	EXT	TPR	
32	BAG	EXT	CMR	
33	EXT	BAG	TPR	
34	EXT	BAG	CMR	
35	EXT	EXT	TPR	
36	EXT	EXT	CMR	
37	BAG	BAG		TPR
38	BAG	BAG		CMR
39	BAG	EXT		TPR
40	BAG	EXT		CMR

(continued)

$\begin{array}{c} \text{Channel} \rightarrow \\ \text{Configuration} \\ \downarrow \end{array}$	1	2	3	4
41	EXT	BAG		TPR
42	EXT	BAG		CMR
43	EXT	EXT		TPR
44	EXT	EXT		CMR
45	BAG		TPR	TPR
46	BAG		TPR	CMR
47	BAG		CMR	TPR
48	BAG		CMR	CMR
49	EXT		TPR	TPR
50	EXT		TPR	CMR
51	EXT		CMR	TPR
52	EXT		CMR	CMR
53		BAG	TPR	TPR
54		BAG	TPR	CMR
55		BAG	CMR	TPR
56		BAG	CMR	CMR
57		EXT	TPR	TPR
58		EXT	TPR	CMR
59		EXT	CMR	TPR
60		EXT	CMR	CMR
61	BAG	BAG	TPR	TPR
62	BAG	BAG	TPR	CMR
63	BAG	BAG	CMR	TPR
64	BAG	BAG	CMR	CMR
65	BAG	EXT	TPR	TPR
66	BAG	EXT	TPR	CMR
67	BAG	EXT	CMR	TPR
68	BAG	EXT	CMR	CMR
69	EXT	BAG	TPR	TPR
70	EXT	BAG	TPR	CMR
71	EXT	BAG	CMR	TPR
72	EXT	BAG	CMR	CMR
73	EXT	EXT	TPR	TPR
74	EXT	EXT	TPR	CMR
75	EXT	EXT	CMR	TPR
76	EXT	EXT	CMR	CMR

(Table "Permitted channel configurations" concluded)

Where:

BAG = Bayard Alpert hot cathode gauge

CMR = Capacitance diaphragm gauge

EXT = Extractor ionization gauge

TPR = Pirani standard gauge

Empty cells in the table above contain place holders (\rightarrow following table).

Invalid transducer configurations

F

The transducer types written in the following table serve as place holders if no gauge is connected. Their "Reading invalid" parameter is always set to "1". Empty cells in the table below may contain valid gauge types

 $(\rightarrow \text{ previous table}).$

$Slot \to$	1	2	3	4	
Configuration ↓					
1		IONI	PIRANI	PIRANI	
2		IONI	PIRANI	PIRANI	
3	IONI		PIRANI	PIRANI	
4	IONI		PIRANI	PIRANI	
5	IONI	IONI		PIRANI	
6	IONI	IONI		PIRANI	
7	IONI	IONI	PIRANI		
8	IONI	IONI	PIRANI		
9			PIRANI	PIRANI	
10			PIRANI	PIRANI	
11			PIRANI	PIRANI	
12			PIRANI	PIRANI	
13		IONI		PIRANI	
14		IONI		PIRANI	
15		IONI		PIRANI	
16		IONI		PIRANI	
17		IONI	PIRANI		
18		IONI	PIRANI		
19		IONI	PIRANI		
20		IONI	PIRANI		
21	IONI			PIRANI	
22	IONI			PIRANI	
23	IONI			PIRANI	
24	IONI			PIRANI	
25	IONI		PIRANI		
26	IONI		PIRANI		
27	IONI		PIRANI		
28	IONI		PIRANI		
29				PIRANI	
30				PIRANI	
31				PIRANI	
32				PIRANI	
33				PIRANI	
34				PIRANI	
35				PIRANI	
36				PIRANI	
37			PIRANI		
38			PIRANI		
39			PIRANI		
40			PIRANI		

(continued)

$Slot \to$	1	2	3	4
Configuration				
↓				
41			PIRANI	
42			PIRANI	
43			PIRANI	
44			PIRANI	
45		IONI		
46		IONI		
47		IONI		
48		IONI		
49		IONI		
50		IONI		
51		IONI		
52		IONI		
53	IONI			
54	IONI			
55	IONI			
56	IONI			
57	IONI			
58	IONI			
59	IONI			
60	IONI			
61				
62				
63				
64				
65				
66				
67				
68				
69				
70				
71				
72				
73				
74				
75				
76				

(Table "Invalid transducer configurations" concluded)

B: Definitions

Data types	Abbreviation	Range	Data type			
	INT8	-2 ⁷ (2 ⁷ - 1)	Integer 1 byte			
	INT16	-2 ¹⁵ (2 ¹⁵ - 1)	Integer 2 byte			
	INT32	-2 ³¹ (2 ³¹ - 1)	Integer 4 byte			
	UINT8	0 (2 ⁸ – 1)	Unsigned integer 1 byte			
	UINT16	0 (2 ¹⁶ – 1)	Unsigned integer 2 byte			
	UINT32	0 (2 ³¹ – 1)	Unsigned integer 4 byte			
	FLOAT	±3.402 × 10 ³⁸	Floating Point, IEEE 754 Short Real Number, 4 byte			
	VSTRING(n)		ISO 646 and ISO 2375			
	OSTRING(n)		Octet string			
Definitions	Term	Meaning				
	Byte	Number of bytes u	used by a data structure (integer value)			
	Store	This parameter defines whether the values are stored in non-volatile memory (\rightarrow store characteristics)				
	Default	Manufacturer-defi	ned value			
Store characteristics	Abbreviation	Meaning				
	V	"Volatile": Value is in the event of a p	s not saved to the RAM or EEPROM and is lost ower failure			
	N	"Nonvolatile": Valu	ue is saved to the RAM or EEPROM and is not f a power failure			
Data access	Abbreviation	Meaning				
	1_R/W	Acyclically readab	le and writeable by a Master Class 1			
	2_R/W	Acyclically readab	le and writeable by a Master Class 2			
	1_R	Acyclically readab	le by a master Class 1			
	2_R	Acyclically readab	le by a master Class 2			
	1_W	Acyclically writeat	ble by a master Class 1			
	2_W	Acyclically writeat	ble by a master Class 2			
	0_XI	Cyclic output data	with master Class 1			

Definitions from the Profibus standard

The following table explains terms used in connection with the Profibus.

Term	Meaning
Alert Elements	Alert Elements are used to communicate notification mes- sages from slave to master when warnings, alarms or events are detected.
Application	A <i>software functional unit</i> consisting of an interconnected aggregation of <i>function blocks, events and objects</i> , which may be distributed and which may have <i>interfaces</i> with other <i>applications</i> .
Characteristic	An characteristic is a property or characteristic of an <i>entity</i> .
	(Au) In block applications a block interface is defined by input/output parameters. These parameters have charac- teristics called parameter characteristics. Examples are access rights and identification names.
	(IT) The UML defines characteristics as a feature within a classifier that describes a range of values that instances of the classifier may hold. It is a property of a class instance (object).
Block	A logical processing unit of software comprising an individ-
(Block Instance)	ual, named copy of the block and associated parameters specified by a block type, which persists from one invoca- tion of the block to the next. Concept similar to the class/ object approach, but well suited to the automation require- ments.
Class	(IT) A class represents a template for several objects and describes how these objects are structured internally. Objects of the same class have the same definition both for their operations and for their information structures.
Configuration (of a system/device)	A step in system design: selecting functional units, assign- ing their locations and identifiers and defining their inter- connections.
Data Structure	An <i>aggregate</i> whose elements need not be of the same <i>data type</i> , and each of them is uniquely referenced by an <i>offset identifier</i> .
Data Type	A data item with certain characteristics and permissible operations on that data, e.g. INT8.
Device	A physical entity capable of performing one or more speci- fied functions in a particular context and delimited by its interfaces.
Direction of Data	Input data are transmitted from the device to the bus.
Direction of Flow	A positive set point causes a flow from P to A
Entity	A particular thing, such as a person, place, <i>process</i> , object, concept, association or <i>event</i> .
Function	(1) A specific purpose of an entity.
	(2) One of a group of actions performed by an entity.
Function Block	A named block consisting of one or more input, output and contained parameters. Function blocks represent the basic automation functions performed by an application which is as independent as possible from the specifics of I/O devices and the network. Each function block processes input para- meters according to a specified algorithm and an internal set of contained parameters. They produce output parame- ters that are available for use within the same function block application or by other function block applications.

C: Block Type

Currently defined	Block Name	Block Type ID
Block Type IDs	Device Block	1
	Sensor Analog Input Function Block	2
	One of N Channel Sensor Analog Input Function Block	3
	Multi Channel Sensor Analog Input Function Block	4
	Discrete Input Function Block	5
	Actuation Analog Output Function Block	6
	Discrete Output Function Block	7
	Analog Output Function Block	8
	Single Stage Controller Function Block	9
	Gas Calibration Transducer Block	10
	Flow Transducer Block	11
	Sensor Analog Input Ambient Temperature Transducer Block	12
	Heat Transfer Vacuum Gauge ¹⁾	13
	Diaphragm Gauge	14
	Cold Cathode Ion Gauge	15
	Hot Cathode Ion Gauge ²⁾	16
	Trip Point Function Block	17
	Reserved	18 2 ⁸ – 1
	Manufacturer-specific	$2^8 \dots 2^{16} - 1$

¹⁾ Pirani measuring system

²⁾ BAG/EXT measuring system

D: Example Using the Inputs and Outputs

Parameter channel	Byte 1 Low byte	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8 High byte
(example)	(100)	(101)	(102)	(103)	(104)	(105)	(106)	(107)
	PKE *)		Index	Res.		PV	VE	
	Bit position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 AK res. Stot Stot Stot Stot Stot				Low byte			High byte
	100.7-100.4	101.7-101.0	Byte 102	Byte 103	Byte 104	Byte 105	Byte 106	Byte 107
Output	0001_0000	0000_0100	22	-				
Meaning	Read	Channel 4	Data unit	_	0	0	0	0
Input	0001_0000	0000_0100	22	_	0	0	13	08
Meaning	Read	Channel 4	Data unit	_	0	0	hl	^D a

*) PKE

E: Examples Parameter Channel

The following example shows how to program the parameter channel.

For this sample the Configuration number 8 is used. The Input data is set up with the parameter channel followed by exception status and channel values in float. The output data is set up with parameter channel followed by transition command and transition command value.

Input data

Low														High
Byte							Byte							
1	2	3	4	5	6	7	8	9	10	11	12	13		25
Parameter channel									Pro	cess	data a	and st	atus	
P۲	ΚE	ID	res.		P٧	VE		ES	Pro	ocess	Valu	e 1		PV4

Output data

Low									High
			Ву	rte				By	/te
1	2	3	4	5	6	7	8	9	10
		Para	amete	r chai	nnel			Pro	cess
Pł	KE	ID	res.		PWE				ΤV

Where:ES=Exception StatusPV=Process ValueTC=Transition CommandTV=Transition Command Value

Emission control using Transition Command

Using the Transition Parameter the emission can be controlled:

Emission on:

Output data

	Byte									
1	2	3	4	5	6	7	8	9	10	
	Parameter channel									
Pł	٢E	ID	res.		PWE				ΤV	
xx	хх	хх	xx	xx xx xx xx				03h	01h	

Emission off: Output data

•										
Byte									Byte	
1	2	3	4	5	6	7	8	9	10	
Parameter channel									Process	
Pł	٢E	ID	res.		PWE				TV	
хх	xx	xx	хх	xx xx xx xx				03h	00h	

No action:

Output data

	Byte										
1	2	3	4	5	6	9	10				
	Process										
Pł	٢E	ID	res.		PV	тс	ΤV				
xx	хх	хх	xx	xx	xx	xx	хх	00h	00h		

Emission control using Parameter Channel

Using Parameter Channel the emission can be controlled.

Read Emission Status from Transducer Block 2(02h), ID 105(69h): Output data

	Byte								
1	2	3	4	5	6	7	8	9	10
	Pro	cess							
PKE		ID	res.		PV	тс	ΤV		
10h	02h	69h	00h	00h	00h	00h	00h	00h xx	00h xx

Input data

Byte									Byte					
1	2	3	4	5	6	7	8	9	10	11	12	13		25
Parameter channel									Process data and status					
Pł	ΚE	ID	res.	s. PWE				ES	Pro	ocess	Valu	e 1		PV4
B0h	02h	69h	00h	00h	00h	00h	00h	xx	хх	xx	xx	хх	хх	xx

Turn emission on writing to Transducer Block 2(02h), ID 105(69h): Output data

		Byte								
	1	2	3	4	4 5 6 7 8					10
		Process								
PKE ID			ID	res.		PV	тс	ΤV		
	A0h	02h	69h	00h	00h	00h	00h	01	00h	00h

Input data

Byte											Byte			
1	2	3	4	5	6	7	8	9	10	11	12	13		25
Parameter channel									Process data and status					
Pł	<e< td=""><td>ID</td><td>res.</td><td></td><td colspan="3">PWE</td><td>ES</td><td>Pro</td><td>ocess</td><td>Valu</td><td>e 1</td><td></td><td>PV4</td></e<>	ID	res.		PWE			ES	Pro	ocess	Valu	e 1		PV4
B0h	02h	69h	00h	00h	00h	00h	01h	хх	хх	хх	хх	хх	хх	хх

10

ΤV

00h

ΧХ

00h

No action:

00h

02h

хх

69h

ΧХ

00h

ΧХ

Output data Byte Byte 2 3 4 5 6 7 8 9 1 Parameter channel Process PKE ID res. PWE тс

00h

хх

00h

ΧХ

00h

ΧХ

01h

хх

F: Board Layout

The following illustration shows the location of the device address switches, EPROM socket for the Profibus firmware and the product name plate on the IF 400 P board.

G: Literature

- [1] www.profibus.com Profibus user organization
- [2] IEC 61158 Type 3 elements: Industrial communication networks Fieldbus specifications

IEC 61784: Industrial communication networks – Fieldbus profiles

www.pfeiffer-vacuum.com
 Operating Instructions
 Ionization Gauge Controller IMG 400
 BG 5520 BDE (German)
 BG 5520 BEN (English)
 Pfeiffer Vacuum GmbH, D–35614 Asslar, Germany

Notes

VACUUM SOLUTIONS FROM A SINGLE SOURCE

Pfeiffer Vacuum stands for innovative and custom vacuum solutions worldwide, technological perfection, competent advice and reliable service.

COMPLETE RANGE OF PRODUCTS

From a single component to complex systems: We are the only supplier of vacuum technology that provides a complete product portfolio.

COMPETENCE IN THEORY AND PRACTICE

Benefit from our know-how and our portfolio of training opportunities! We can support you with your plant layout and provide first-class on-site-service worldwide.

Are you looking for a perfect vacuum solution? Please contact us: Pfeiffer Vacuum GmbH Headquarters • Germany T +49 6441 802-0 info@pfeiffer-vacuum.de

www.pfeiffer-vacuum.com

