Pfeiffer Vacuum

2.2.3.2 Pumpen hoher Gaslasten mit Turbomolekularpumpen

Bei hohen Gaslasten werden Turbopumpen starken Beanspruchungen ausgesetzt. Die Gasreibung heizt die Rotoren auf. Die maximalen Gaslasten werden durch die zulässige Rotortemperatur von höchstens 120 °C begrenzt. Oberhalb dieser Temperaturgrenze kommt es zu einer irreversiblen plastischen Deformation der Rotoren mit nicht vorhersehbarem zeitlichen Verlauf.

Durch Messung der Rotortemperatur und Begrenzung der maximalen Temperatur können die Pumpen der HiPace-Serie mit Saugvermögen > 1.000 l s-1 nicht überhitzt werden. Präzise Charakterisierung des Prozesses erlaubt bei einer Vielzahl von Pumpen die Abschätzung der Rotortemperatur und definiert ein Prozessfenster für den langzeitstabilen und sicheren Betrieb.

Die Eignung einer Turbopumpe zum Pumpen hoher Gaslasten kann durch das Design von Rotor und Stator sowie präzise Kontrolle des Temperaturverlaufs in der Pumpe beeinflusst werden. So sind z. B. die Pumpen der ATH M-Serie explizit auf hohen Gasdurchsatz bei vergleichsweise hohen Prozessdrücken ausgelegt. Diese Turbopumpen wurden speziell entwickelt für Beschichtungs- und Trockenätzprozesse in der Halbleiterindustrie. Die besonderen Anforderungen liegen hier beim Pumpen von korrosiven Medien, dem beheizten Betrieb der Pumpen zur Vermeidung von Kondensation von Prozesschemikalien oder Nebenprodukten und eben speziell auch hohen Prozessgasdurchflüssen für schwere Gase. Diese Entwicklungen können auf Anwendungen im Bereich Solar und LED-Lichttechnik übertragen werden. Auch der Einsatz von Turbopumpen in Schleusen mit hohem Übergabedruck zwischen Vorpumpen und Turbopumpen und industrielle Betriebsbedingungen mit hohen Kühlwassertemperaturen ist mit dieser Auslegung möglich.

Auch Pumpen, die durch hohe Kompressionsverhältnisse speziell für leichte Gase auf die Erzeugung niedriger Drücke ausgelegt sind, können innerhalb gewisser Grenzen für Vakuumprozesse mit hohen Gasdurchsätzen eingesetzt werden. Da die Reibleistung dem Quadrat der Umfangsgeschwindigkeit proportional ist, reduziert man bei Pumpen für Betrieb mit hohen Gaslasten die Drehzahl. Man erreicht so höhere Gaslasten auf Kosten des Saugvermögens und besonders des Kompressionsverhältnisses. Diese Maßnahme kann das Prozessfenster für Pumpen erweitern.

Besonders kritisch ist das Pumpen von schweren Edelgasen wie Krypton oder Xenon. Durch ihr hohes Atomgewicht erzeugen sie beim Auftreffen auf den Rotor große Wärmemengen, können aber auf Grund ihrer geringen spezifischen Wärmekapazität nur wenig Wärme auf den Stator bzw. auf das Gehäuse übertragen, was zu hohen Rotortemperaturen führt. Deshalb sind die maximalen Gasdurchsätze für diese Gase niedrig im Vergleich zu Gasmolekülen oder einatomigen Gasen mit niedrigerer Masse, also höherer Beweglichkeit und Stoßzahl.

Beim Betrieb mit Prozessgasen erfüllt die Turbopumpe zwei wichtige Funktionen:

  • schnelles Evakuieren der Prozesskammer auf einen niedrigen Druck (saubere Anfangsbedingungen durch Entgasen der Oberflächen und Substrate)
  • Konstanthaltung des gewünschten Druckes wahrend des Vakuumprozesses (Beschichten, Trockenätzen, etc.)

Üblicherweise sind der Gasdurchsatz $Q$ und der Arbeitsdruck $p_{Prozess}$ während eines Prozesses vorgegeben und damit auch das Saugvermögen an der Prozesskammer.

$S=\frac{Q}{p_{Prozess}}$

Die Turbopumpe wird nach dem erforderlichen Gasdurchsatz ausgewählt. Im Katalog sind die maximal zulässigen Gasdurchsätze für verschiedene Gase der jeweiligen Pumpe angegeben.

Gasdurchsatz unterschiedlicher Turbopumpen
						bei hohen Prozessdrücken

Abbildung 2.7: Gasdurchsatz unterschiedlicher Turbopumpen bei hohen Prozessdrücken

In Abbildung 2.7 sind die Gasdurchsatzkurven für unterschiedliche Turbopumpen auf Flansch NW 250 angegeben. Die Vorpumpe für die ATH 2303 M ist hierbei von ein typischer prozesstauglicher Wälzkolbenpumpstand, wie er in der Halbleiterindustrie eingesetzt wird. Die Saugleistung muss für beide Pumpen gleich sein, da der gleiche Gasstrom nacheinander beide Pumpen passiert:

$S_{Vorvakuum}=\frac{Q}{p_{Vorvakuum}}$

Die Auswahl der Vorvakuumpumpe hat Einfluss auf die Temperaturbilanz der Turbopumpe. Wird das Saugvermögen der Vorpumpe gerade so ausgelegt, dass mit dem Gasdurchsatz der Turbopumpe deren maximale Vorvakuumverträglichkeit erreicht wird, so wird der Rotor der Turbopumpe thermisch belastet. Das Saugvermögen der Vorpumpe sollte größer gewählt werden, um Gasreibung und damit thermische Belastung der Turbopumpe zu reduzieren.

Das Saugvermögen an der Prozesskammer wird entweder über die Drehzahl oder ein Regelventil vor der Turbopumpe auf den erforderlichen Wert gedrosselt. Eine Druckregelung über die Drehzahl der Turbopumpe scheitert an der hohen Trägheit des Rotors, die eine schnelle Variation der Drehzahl verhindert. In einigen Prozessfenstern gelingt eine Druckregelung über die Drehzahlregulierung der Vorpumpe.

Vakuumanlage mit Druck- und
						Durchsatzregelung

Abbildung 2.8: Vakuumanlage mit Druck- und Durchsatzregelung

Wir betrachten als Beispiel eine Vakuum-Prozessanlage nach Abbildung 2.8 mit den Parametern

$Q$ = 3,0 Pa m3s-1, Prozessgas Argon
$p_{Prozess}$ = 5 Pa

Mit $S=\frac{Q}{p_{Prozess}}$

ergibt sich ein Saugvermögen der Turbopumpe von nominell 600 l s-1. Bei diesem hohen Prozessdruck wird das maximale Saugvermögen von Turbopumpen nicht mehr erreicht. Wir wählen daher als Turbopumpe (2) eine ATH 2303 M, die bei diesem Druck immer noch ein Saugvermögen von mehr als 800 l/s mit Splitterschutz erreicht und als Vorpumpe eine A 603 P. Mit dieser Prozesspumpe erreichen wir bei einem Gasdurchsatz von 3,0 Pa m3 s-1 einen Vorvakuumdruck von 0,24 hPa. Bei einem maximalen Vorvakuumdruck der Turbopumpe von 3,3 hPa ist diese Auslegung trotz des thermisch anspruchsvollen Prozessgases Argon konservativ.

Das Prozessgas wird über einen Massenflussregler (5) in die Kammer (1) eingelassen. Das vom Druck $p_{Prozess}$ gesteuerte Schmetterlingsventil (4) drosselt das Saug-vermögen der Turbopumpe (2). Nach Ende des Prozessschritts stellt man die Gaszufuhr ab, öffnet das Regelventil vollständig um die Kammer wieder auf Enddruck zu evakuieren. Dabei wird ein neues Werkstück in die Prozesskammer eingeschleust. Weitere Hinweise für das Pumpen hoher Gaslasten sowie korrosiver und abrasiver Stoffe finden Sie in Kapitel 4.8.3.

Seite: