

BETRIEBSANLEITUNG OPERATING INSTRUCTIONS

Original

HIPACE 350

Turbopumpe
Turbopump

Dear Customer,

Thank you for choosing a Pfeiffer Vacuum product. Your new turbopump is designed to support you by its performance, its perfect operation and without interfering your individual application. The name Pfeiffer Vacuum stands for high-quality vacuum technology, a comprehensive and complete range of top-quality products and first-class service. With this expertise, we have acquired a multitude of skills contributing to an efficient and secure implementation of our product.

Knowing that our product must not interfere with your actual work, we are convinced that our product offers you the solution that supports you in the effective and trouble-free execution of your individual application.

Please read these operating instructions before putting your product into operation for the first time. If you have any questions or suggestions, please feel free to contact info@pfeiffer-vacuum.de.

Further operating instructions from Pfeiffer Vacuum can be found in the <u>Download Center</u> on our website.

Disclaimer of liability

These operating instructions describe all models and variants of your product. Note that your product may not be equipped with all features described in this document. Pfeiffer Vacuum constantly adapts its products to the latest state of the art without prior notice. Please take into account that online operating instructions can deviate from the printed operating instructions supplied with your product.

Furthermore, Pfeiffer Vacuum assumes no responsibility or liability for damage resulting from the use of the product that contradicts its proper use or is explicitly defined as foreseeable misuse.

Copyright

This document is the intellectual property of Pfeiffer Vacuum and all contents of this document are protected by copyright. They may not be copied, altered, reproduced or published without the prior written permission of Pfeiffer Vacuum.

We reserve the right to make changes to the technical data and information in this document.

Inhaltsverzeichnis

1	Zu d	lieser Anleitung	7
	1.1	Gültigkeit	7
		1.1.1 Mitgeltende Dokumente	7
		1.1.2 Varianten	7
	1.2	Zielgruppe	7
	1.3	Konventionen	7
		1.3.1 Anweisungen im Text	7
		1.3.2 Piktogramme	8
		1.3.3 Aufkleber auf dem Produkt	8
		1.3.4 Abkürzungen	9
	1.4	Markennachweis	9
2	Sich	erheit	10
_	2.1	Allgemeine Sicherheitshinweise	10
	2.2	Sicherheitshinweise	10
	2.3	Sicherheitsmaßnahmen	14
	2.4	Einsatzgrenzen des Produkts	15
	2.5	Bestimmungsgemäße Verwendung	15
	2.6	Vorhersehbarer Fehlgebrauch	16
	2.7	Personengualifikation	16
	2.1	2.7.1 Personenqualifikation sicherstellen	16
		2.7.2 Personenqualifikation bei Wartung und Reparatur	17
		2.7.3 Mit Pfeiffer Vacuum weiterbilden	17
		2.7.3 Will Fleiller Vacuum weiterbliden	17
3	Proc	duktbeschreibung	18
	3.1		18
		3.1.1 Kühlung	18
		3.1.2 Rotorlager	18
		3.1.3 Antrieb	18
	3.2	Produkt identifizieren	19
		3.2.1 Produkttypen	19
		3.2.2 Produktmerkmale	19
	3.3	Lieferumfang	19
4	Tran	nsport und Lagerung	20
	4.1	Transport	20
	4.2	Lagerung	20
5	Inst	allation	21
	5.1	Vorbereitende Arbeiten	21
	5.2	Turbopumpe am Unterteil befestigen	22
	5.3	Hochvakuumseite anschließen	22
		5.3.1 Anforderungen für die Auslegung des Gegenflansches	22
		5.3.2 Erdbebensicherheit berücksichtigen	23
		5.3.3 Splitterschutz oder Schutzgitter verwenden	24
		5.3.4 Dämpfungskörper verwenden	24
		5.3.5 Einbaulagen	25
		5.3.6 ISO-K Flansch an ISO-K befestigen	25
		5.3.7 ISO-K Flansch an ISO-F befestigen	26
		5.3.8 CF-Flansch an CF-F befestigen	27
	5.4	Vorvakuumseite anschließen	28
	5.5		30
	5.6	Elektrische Versorgung anschließen	30
	٥.٠	5.6.1 Turbopumpe erden	31
		5.6.2 Elektrischen Anschluss herstellen	31
_	D.A.	:- la	00
6	Betr	TED	33

	6.1	Inbetriebnahme	33
	6.2	Betriebsarten 6.2.1 Betrieb ohne Bedieneinheit	33 34
		6.2.2 Betrieb über Multifunktionsanschluss "X3"	34 34
		6.2.3 Betrieb über Anschluss "E74"	34
		6.2.4 Betrieb über Pfeiffer Vacuum Steuergerät	34
		6.2.5 Betrieb über Feldbus	34
	6.3	Turbopumpe einschalten	35
	6.4	Betriebsüberwachung	35
		6.4.1 Betriebsanzeige über LED	35
	C E	6.4.2 Temperaturüberwachung	36
	6.5	Ausschalten und Fluten 6.5.1 Ausschalten	36 36
		6.5.2 Fluten	36
7	Wart	tuna	38
	7.1	Allgemeine Wartungshinweise	38
	7.2	Checkliste für Inspektion und Wartung	38
	7.3	Betriebsmittelspeicher austauschen	39
		7.3.1 Betriebsmittelspeicher demontieren	40
	7.4	7.3.2 Betriebsmittelspeicher montieren	41
	7.4	Antriebselektronik austauschen 7.4.1 Antriebselektronik demontieren	42 43
		7.4.2 Antriebselektronik demonderen	44
		7.4.3 Drehzahlvorgabe bestätigen	44
8	Auß	erbetriebnahme	46
	8.1	Stillsetzen für längere Zeit	46
	8.2	Wiederinbetriebnahme	46
9	Recy	cling und Entsorgung	47
	9.1	Allgemeine Entsorgungshinweise	47
	9.2	Turbopumpe entsorgen	47
10	Stör	ungen	48
11	Serv	ricelösungen von Pfeiffer Vacuum	50
12	Ersa	tzteile HiPace 350	52
13	Zube		53
		Zubehörinformationen Zubehör bestellen	53 53
14		nnische Daten und Abmessungen	56
17	14.1	Allgemeines	56
	14.2	•	56
	14.3	Kennlinien	59
		Medienberührende Werkstoffe	60
	14.5	Abmessungen	60
	EG F	Konformitätserklärung	62
	IIK L	Conformitätsorklärung	62

Tabellenverzeichnis

Tab. 1:	Verwendete Abkürzungen im Dokument	9
Tab. 2:	Zulässige Umgebungsbedingungen	15
Tab. 3:	Produktbezeichnung von HiPace Turbopumpen	19
Tab. 4:	Merkmale der Turbopumpen	19
Tab. 5:	Anforderungen für die Befestigung der Turbopumpen am Unterteil	22
Tab. 6:	Anforderungen für die Auslegung des kundenseitigen Hochvakuumanschlusses	23
Tab. 7:	Reduzierung des Saugvermögens bei Verwendung eines Splitterschutzes oder Schutzgitters	24
Tab. 8:	Werkseitige Einstellung der Antriebselektronik von Turbopumpen bei Auslieferung	33
Tab. 9:	Verhalten und Bedeutung der LEDs an der Antriebselektronik	35
Tab. 10:	Werkseinstellungen für verzögertes Fluten bei Turbopumpen	37
Tab. 11:	Wartungsintervalle	39
Tab. 12:	Charakteristische Nenndrehzahlen der Turbopumpen	44
Tab. 13:	Störungsbehebung bei Turbopumpen	49
Tab. 14:	Verfügbare Ersatzteile	52
Tab. 15:	Zubehör	54
Tab. 16:	Zubehörabweichungen bei TC 120 48 V DC	55
Tab. 17:	Umrechnungstabelle: Druckeinheiten	56
Tab. 18:	Umrechnungstabelle: Einheiten für Gasdurchsatz	56
Tab. 19:	Technische Daten für HiPace 350 TC 110	58
Tab. 20:	Technische Daten für HiPace 350 TC 120	59
Tah 21:	Werkstoffe mit Prozessmedienkontakt	60

Abbildungsverzeichnis

Abb. 1:	Position der Aufkleber auf dem Produkt	9
Abb. 2:	Aufbau HiPace 350	18
Abb. 3:	Beispiel: Sicherung gegen Verschieben und Kippen durch externe Erschütterungen	24
Abb. 4:	Empfohlene Ausrichtung des Vorvakuumanschlusses bei Verwendung ölgedichteter Vorpumpen	25
Abb. 5:	Flanschverbindung ISO-K zu ISO-K, Klammerschraube	25
Abb. 6:	Flanschverbindung ISO-K zu ISO-F, Sechskantschraube und Gewindebohrung	26
Abb. 7:	Flanschverbindung ISO-K zu ISO-F, Stiftschraube und Gewindebohrung	26
Abb. 8:	Flanschverbindung ISO-K zu ISO-F, Stiftschraube und Durchgangsbohrung	27
Abb. 9:	Flanschverbindung CF-F, Sechskantschraube und Durchgangsbohrung	27
Abb. 10:	Flanschverbindung CF-F, Siftschraube und Gewindebohrung	28
Abb. 11:	Flanschverbindung CF-F, Siftschraube und Durchgangsbohrung	28
Abb. 12:	Beispiel für den Vorvakuumanschluss	29
Abb. 13:	Beispiel für den Zubehöranschluss über Adapter TCS 12	30
Abb. 14:	Beispiel: Anschluss des Erdungskabels	31
Abb. 15:	Antriebselektronik mit Netzteil verbinden	32
Abb. 16:	Betriebsmittelspeicher demontieren	41
Abb. 17:	Betriebsmittelspeicher montieren	42
Abb. 18:	Demontage der Antriebselektronik TC 110 TC 120	43
Abb. 19:	Montage der Antriebselektronik TC 110 TC 120	44
Abb. 20:	Ersatzteile HiPace 350	52
Abb. 21:	Kennlinie Gasdurchsatz in Abhängigkeit der Drehzahl	59
Abb. 22:	HiPace 350 DN 100 ISO-K	60
Abb. 23:	HiPace 350 DN 100 ISO-F	61
Δhh 24·	HiPace 350 I DN 100 CE-E	61

1 Zu dieser Anleitung

WICHTIG

Vor Gebrauch sorgfältig lesen.

Aufbewahren für späteres Nachschlagen.

1.1 Gültigkeit

Diese Betriebsanleitung ist ein Kundendokument der Firma Pfeiffer Vacuum. Die Betriebsanleitung beschreibt das benannte Produkt in seiner Funktion und vermittelt die wichtigsten Informationen für den sicheren Gebrauch des Geräts. Die Beschreibung erfolgt nach den geltenden Richtlinien. Alle Angaben in dieser Betriebsanleitung beziehen sich auf den aktuellen Entwicklungsstand des Produkts. Die Dokumentation behält ihre Gültigkeit, sofern kundenseitig keine Veränderungen am Produkt vorgenommen werden.

1.1.1 Mitgeltende Dokumente

Dokument	Nummer
Betriebsanleitung "Antriebselektronik" TC 110 Standard	PT 0204 BN
Betriebsanleitung "Antriebselektronik" TC 110 PB	PT 0245 BN
Betriebsanleitung "Antriebselektronik" TC 110 E74	PT 0301 BN
Betriebsanleitung "Antriebselektronik" TC 110 RS	PT 0351 BN
Konformitätserklärung	Bestandteil dieses Dokuments

Sie finden diese Dokumente im Pfeiffer Vacuum Download Center.

1.1.2 Varianten

- HiPace 350, DN 100 ISO-K, TC 110
- HiPace 350, DN 100 ISO-K, TC 120
- HiPace 350, DN 100 ISO-F, TC 110
- HiPace 350, DN 100 ISO-F, TC 120
- HiPace 350, DN 100 CF-F, TC 110
- HiPace 350, DN 100 CF-F, TC 120

1.2 Zielgruppe

Diese Betriebsanleitung richtet sich an alle Personen, die das Produkt

- transportieren,
- aufstellen (installieren),
- bedienen und betreiben,
- außerbetriebnehmen,
- warten und reinigen,
- lagern oder entsorgen.

Die in diesem Dokument beschriebenen Arbeiten dürfen nur Personen durchführen, die eine geeignete technische Ausbildung besitzen (Fachpersonal) oder eine entsprechende Schulung durch Pfeiffer Vacuum erhalten haben.

1.3 Konventionen

1.3.1 Anweisungen im Text

Handlungsanweisungen im Dokument folgen einem generellen und in sich abgeschlossenen Aufbau. Die notwendige Tätigkeit ist durch einen einzelnen oder mehrere Handlungsschritte gekennzeichnet.

Einzelner Handlungsschritt

Ein liegendes gefülltes Dreieck kennzeichnet den einzigen Handlungsschritt einer Tätigkeit.

▶ Dies ist ein einzelner Handlungsschritt.

Abfolge von mehreren Handlungsschritten

Die numerische Aufzählung kennzeichnet eine Tätigkeit mit mehreren notwendigen Handlungsschritten.

- 1. Handlungsschritt 1
- 2. Handlungsschritt 2
- 3. ...

1.3.2 Piktogramme

Im Dokument verwendete Piktogramme kennzeichnen nützliche Informationen.

Hinweis

Tipp

1.3.3 Aufkleber auf dem Produkt

Dieser Abschnitt beschreibt alle vorhandenen Aufkleber auf dem Produkt, sowie deren Bedeutung.

Typenschild

Das Typenschild befindet sich auf dem Pumpenunterteil.



Abb. 1: Position der Aufkleber auf dem Produkt

- 1 Hinweis Betriebsanleitung
- 2 Verschlusssiegel
- 3 Hinweis Erdungsanschluss
- 4 Typenschild der Turbopumpe

1.3.4 Abkürzungen

Abkürzung	Bedeutung im Dokument			
CF	Flansch: Anschlussverbindung metallgedichtet gemäß ISO 3669			
d	Betrag des Durchmessers (in mm)			
DC	Gleichstrom			
DN	Nomineller Durchmesser als Größenbeschreibung			
f	Betrag der Drehzahl einer Vakuumpumpe (frequency, in 1/min oder Hz)			
HPU	Handheld Programming Unit. Assistent zur Steuerung und Kontrolle der Pumpenparameter			
HV	Hochvakuumflansch, Hochvakuumseite			
ISO	Flansch: Anschlussverbindung gemäß ISO 1609 und ISO 2861			
LED Leuchtdiode				
FE Funktionserde (functional earth)				
FKM	Fluor-Polymer-Kautschuk			
[P:xxx] Steuerparameter der Antriebselektronik. Fettgedruckt als dreistellige Nur gen Klammern. Häufig in Verbindung mit einer Kurzbezeichnung angeze Beispiel: [P:312] Softwareversion				
SW	Schlüsselweite			
T	Temperatur (in °C)			
TC	Antriebselektronik der Turbopumpe (turbo controller)			
TPS	Spannungsversorgung (turbo power supply)			
VV	Vorvakuumflansch, Vorvakuumanschluss			
Х3	15-polige D-Sub-Anschlussbuchse an der Antriebselektronik der Turbopumpe			

Tab. 1: Verwendete Abkürzungen im Dokument

1.4 Markennachweis

- Torx[®] ist eine Marke von Acument Intellectual Properties, LLC.
- Profibus[®] ist eine Marke der Profibus Nutzerorganisation e.V.

Sicherheit 2

Allgemeine Sicherheitshinweise

Im vorliegenden Dokument sind folgende 4 Risikostufen und 1 Informationslevel berücksichtigt.

GEFAHR

Unmittelbar bevorstehende Gefahr

Kennzeichnet eine unmittelbar bevorstehende Gefahr, die bei Nichtbeachtung zum Tod oder zu schweren Verletzungen führt.

► Anweisung zur Vermeidung der Gefahrensituation

WARNUNG

Möglicherweise bevorstehende Gefahr

Kennzeichnet eine bevorstehende Gefahr, die bei Nichtbeachtung zum Tod oder zu schweren Verletzungen führen kann.

Anweisung zur Vermeidung der Gefahrensituation

VORSICHT

Möglicherweise bevorstehende Gefahr

Kennzeichnet eine bevorstehende Gefahr, die bei Nichtbeachtung zu leichten Verletzungen führen kann.

Anweisung zur Vermeidung der Gefahrensituation

HINWEIS

Gefahr von Sachschäden

Wird verwendet um auf Handlungen aufmerksam zu machen, die nicht auf Personenschäden bezogen sind.

Anweisung zur Vermeidung von Sachschäden

Hinweise, Tipps oder Beispiele kennzeichnen wichtige Informationen zum Produkt oder zu diesem Dokument.

2.2 Sicherheitshinweise

Alle Sicherheitshinweise in diesem Dokument beruhen auf Ergebnissen der Risikobeurteilung gemäß Maschinenrichtlinie 2006/42/EG Anhang I und EN ISO 12100 Kapitel 5. Soweit zutreffend wurden alle Lebensphasen des Produkts berücksichtigt.

Risiken beim Transport

WARNUNG

Gefahr schwerer Verletzungen durch herabfallende Gegenstände

Durch das Herabfallen von Gegenständen besteht die Gefahr von Verletzungen an Gliedmaßen bis hin zu Knochenbrüchen.

- Seien Sie beim Transport der Produkte von Hand besonders vorsichtig und aufmerksam.
- Stapeln Sie die Produkte nicht.
- ▶ Tragen Sie Schutzausrüstungen, z. B. Sicherheitsschuhe.

Risiken bei der Installation

A GEFAHR

Lebensgefahr durch elektrischen Schlag

Nicht spezifizierte oder nicht zugelassene Netzteile führen zu schwersten Verletzungen bis hin zum Todesfall.

- Achten Sie darauf, dass das Netzteil den Anforderungen für doppelte Isolierung zwischen Netzeingangsspannung und Ausgangsspannung gemäß IEC 61010-1, IEC 60950-1 und IEC 62368-1 entspricht.
- ► Achten Sie darauf, dass das Netzteil den Anforderungen für Ableitströme gemäß IEC 61010-1, IEC 60950-1 und IEC 62368-1 entspricht.
- Verwenden Sie möglichst original Netzteile oder ausschließlich Netzteile, die den geltenden Sicherheitsbestimmungen entsprechen.

WARNUNG

Lebensgefahr durch fehlende Netztrenneinrichtung

Die Vakuumpumpe und die Antriebselektronik sind nicht mit einer Netztrenneinrichtung (Hauptschalter) ausgestattet.

- ▶ Installieren Sie eine Netztrenneinrichtung gemäß SEMI-S2.
- Sehen Sie einen Leistungsschalter mit einem Ausschaltvermögen von min. 10.000 A vor.

WARNUNG

Verletzungsgefahr aufgrund nicht sachgerechter Installation

Durch unsichere oder nicht sachgerechte Installation entstehen gefährliche Situationen.

- ▶ Nehmen Sie keine eigenmächtigen Umbauten oder Veränderungen am Gerät vor.
- Sorgen Sie für die Integration in einen Not-Aus-Sicherheitskreis.

WARNUNG

Gefahr von Schnittverletzungen an beweglichen, scharfkantigen Teilen bei Eingriff in den offenem Hochvakuumflansch

Bei offenem Hochvakuumflansch ist der Zugang zu scharfkantigen Teilen möglich. Eine manuelle Rotation des Rotors vergrößert die Gefahrensituation. Es besteht die Gefahr von Schnittverletzungen, bis hin zum Abtrennen von Körperteilen (z. B. Fingerkuppen). Es besteht die Gefahr des Einzugs von Haaren und losen Kleidungsstücken. Hineinfallende Gegenstände zerstören die Turbopumpe im späteren Betrieb.

- ► Entfernen Sie die original Schutzdeckel erst unmittelbar vor dem Anschluss des Hochvakuumflanschs.
- Greifen Sie nicht in den Hochvakuumanschluss.
- Tragen Sie Schutzhandschuhe während der Installation.
- ▶ Nehmen Sie die Turbopumpe nicht mit offenen Vakuumanschlüssen in Betrieb.
- ► Führen Sie die mechanische Installation immer vor dem elektrischen Anschluss aus.
- Verhindern Sie den Zugang zum Hochvakuumanschluss der Turbopumpe von der Betreiberseite (z. B. offene Vakuumkammer).

WARNUNG

Lebensgefahr durch Vergiftung bei Austritt von toxischen Prozessmedien an beschädigten Anschlüssen

Plötzliches Verdrehen der Turbopumpe im Störungsfall führt zu Beschleunigungen von Anbauten. Es besteht das Risiko von Beschädigungen und Leckagen an kundenseitigen Anschlüssen (z.B. Vorvakuumleitung). Der Austritt von Prozessmedien ist die Folge. Bei Prozessen mit toxischen Medien besteht Verletzungs- und Lebensgefahr durch Vergiftung.

- ► Halten Sie an der Turbopumpe anzuschließende Massen möglichst gering.
- ▶ Verwenden Sie ggf. flexible Leitungen für den Anschluss an der Turbopumpe.

WARNUNG

Verletzungsgefahr durch Abreißen der Turbopumpe mit Dämpfungskörper im Störungsfall

Plötzliches Blockieren des Rotors erzeugt gemäß ISO 27892 hohe zerstörende Drehmomente. Diese führen bei Verwendung eines Dämpfungskörpers höchstwahrscheinlich zum Abreißen der Turbopumpe. Die dabei freigesetzte Energie kann die gesamte Turbopumpe oder Bruchstücke aus deren Inneren durch den Raum schleudern. Potentiell gefährliche Gase können entweichen. Es besteht die Gefahr von schwersten Verletzungen, evtl. mit Todesfolge und großen Sachschäden.

- ► Ergreifen Sie bauseitig geeignete Sicherungsmaßnahmen zur Kompensation der auftretenden Drehmomente.
- Halten Sie vor der Installation eines Dämpfungskörpers unbedingt Rücksprache mit Pfeiffer Vacuum

WARNUNG

Gefahr von Schnittverletzungen durch unvorhergesehenen automatischen Hochlauf

Das Verwenden von Gegensteckern für die Antriebselektronik (Zubehör), ermöglicht den sofortigen Hochlauf der Vakuumpumpe nach Herstellen der Spannungsversorgung. Das Aufstecken von Gegensteckern vor oder während der Installation führt zu der Gefahr von Schnittverletzungen an rotierenden scharfkantigen Teilen im offenliegenden Hochvakuumflansch.

- ▶ Verwenden Sie die Gegenstecker nur nach der mechanischen Installation.
- Schalten Sie die Turbopumpe nur unmittelbar vor dem Betrieb ein.

Risiken beim Betrieb

WARNUNG

Verbrennungsgefahr an heißen Oberflächen bei Verwendung von Zusatzeinrichtungen zum Heizen für den Betrieb

Die Verwendung von Zusatzeinrichtungen zum Heizen der Vakuumpumpe oder zur Prozessoptimierung erzeugt sehr hohe Temperaturen an berührbaren Oberflächen. Es besteht Verbrennungsgefahr.

- ► Richten Sie ggf. einen Berührungsschutz ein.
- ▶ Bringen Sie ggf. dafür vorgesehene Warnaufkleber an den Gefahrenstellen an.
- Sorgen Sie für ausreichend Abkühlung vor Arbeiten an der Vakuumpumpe oder in deren Umgebung.
- ► Tragen Sie Schutzausrüstung, z.B. Handschuhe.

WARNUNG

Gefahr schwerer Verletzungen bei Zerstörung der Vakuumpumpe durch Überdruck

Gaseintritt mit sehr hohem Überdruck führt zur Zerstörung der Vakuumpumpe. Es besteht die Gefahr schwerer Verletzungen durch herausgeschleuderte Objekte.

- ▶ Überschreiten Sie nicht den zulässigen Einlassdruck von 1500 hPa (abs.) an Ansaugseite oder Flut- und Sperrgasanschluss.
- Stellen Sie sicher, dass prozessbedingt hohe Überdrücke nicht direkt in die Vakuumpumpe gelangen.

VORSICHT

Gefahr von Verletzungen durch Kontakt mit Vakuum beim Belüften

Während des Belüftens der Vakuumpumpe besteht die Gefahr geringer Verletzungen durch unmittelbaren Kontakt von Körperteilen mit dem Vakuum, z.B. Hämatome.

- ▶ Drehen Sie die Flutschraube beim Belüften nicht vollständig aus dem Gehäuse.
- ► Halten Sie Abstand zu automatischen Fluteinrichtungen, wie Flutventilen.

Risiken bei der Wartung, Außerbetriebnahme und Entsorgung

WARNUNG

Lebensgefahr durch elektrischen Schlag bei Wartungs- und Servicearbeiten

Das Gerät ist nur bei gezogenem Netzstecker und stillstehender Turbopumpe völlig spannungsfrei. Es besteht Lebensgefahr durch elektrischen Schlag bei Berührung spannungsführender Komponen-

- Schalten Sie vor allen Arbeiten den Hauptschalter aus.
- ► Warten Sie den Stillstand der Turbopumpe ab (Drehzahl f = 0).
- Ziehen Sie den Netzstecker vom Gerät ab.
- ► Sichern Sie das Gerät gegen unbeabsichtigtes Wiedereinschalten.

WARNUNG

Gesundheitsgefahr durch Vergiftung an toxisch kontaminierten Bauteilen oder Geräten

Toxische Prozessmedien führen zur Kontamination der Geräte oder Teilen davon. Bei Wartungsarbeiten besteht Gesundheitsgefahr durch Kontakt mit diesen giftigen Substanzen. Die unzulässige Beseitigung toxischer Substanzen führt zu Umweltschäden.

- Treffen Sie geeignete Sicherheitsvorkehrungen und verhindern Sie Gesundheitsgefährdungen und Umweltbelastungen durch toxische Prozessmedien.
- Dekontaminieren Sie die betreffenden Teile vor der Ausführung von Wartungsarbeiten.
- Tragen Sie Schutzausrüstung.

WARNUNG

Schnittverletzungen an beweglichen, scharfkantigen Teilen bei Eingriff in den offenem Hochvakuumanschluss

Unsachgemäße Behandlung der Turbopumpe vor Wartungsarbeiten führt zu Gefahrensituationen mit Verletzungsrisiko. Es besteht die Gefahr von Schnittverletzungen durch Zugang an scharfkantigen, rotierenden Teilen beim Ausbau der Turbopumpe.

- ▶ Warten Sie den Stillstand der Turbopumpe ab (Drehzahl f = 0).
- Schalten Sie die Turbopumpe ordentlich aus.
- Sichern Sie die Turbopumpe gegen Wiedereinschalten.
- ▶ Verschließen Sie offene Anschlüsse unmittelbar nach dem Ausbau durch die original Schutzdeckel.

WARNUNG

Vergiftungsgefahr durch Kontakt mit gesundheitsschädlichen Stoffen

Der Betriebsmittelspeicher und Teile der Turbopumpe enthalten möglicherweise giftige Substanzen aus den gepumpten Medien.

- Dekontaminieren Sie betreffende Teile vor der Ausführung von Wartungsarbeiten.
- Verhindern Sie Gesundheitsgefährdungen oder Umweltbelastungen durch entsprechende Sicherheitsvorkehrungen.
- Beachten Sie das Sicherheitsdatenblatt des Betriebsmittels.
- Entsorgen Sie den Betriebsmittelspeicher nach den geltenden Vorschriften.

Risiken bei Störungen

WARNUNG

Lebensgefahr durch elektrischen Schlag im Störungsfall

Im Störungsfall stehen die mit dem Netz verbundenen Geräte möglicherweise unter Spannung. Es besteht Lebensgefahr durch elektrischen Schlag bei Berührung spannungsführender Komponenten.

Halten Sie den Netzanschluss immer frei zugänglich, um die Verbindung jederzeit trennen zu

WARNUNG

Lebensgefahr durch Abreißen der Turbopumpe im Störungsfall

Plötzliches Blockieren des Rotors erzeugt gemäß ISO 27892 hohe zerstörende Drehmomente. Diese führen bei **nicht** ordnungsgemäßer Befestigung zum Abreißen der Turbopumpe. Die dabei freigesetzte Energie kann die gesamte Turbopumpe oder Bruchstücke aus deren Inneren durch den Raum schleudern. Potentiell gefährliche Gase können entweichen. Es besteht die Gefahr von schwersten Verletzungen, evtl. mit Todesfolge und großen Sachschäden.

- ▶ Befolgen Sie die Installationsanweisungen für diese Turbopumpe.
- ▶ Beachten Sie die Anforderungen an Stabilität und Auslegung des Gegenflansches.
- Verwenden Sie nur original Zubehör oder von Pfeiffer Vacuum zugelassenes Befestigungsmaterial für die Installation.

WARNUNG

Lebensgefahr durch Vergiftung bei Austritt von toxischen Prozessmedien an beschädigten Anschlüssen

Plötzliches Verdrehen der Turbopumpe im Störungsfall führt zu Beschleunigungen von Anbauten. Es besteht das Risiko von Beschädigungen und Leckagen an kundenseitigen Anschlüssen (z.B. Vorvakuumleitung). Der Austritt von Prozessmedien ist die Folge. Bei Prozessen mit toxischen Medien besteht Verletzungs- und Lebensgefahr durch Vergiftung.

- ▶ Halten Sie an der Turbopumpe anzuschließende Massen möglichst gering.
- ▶ Verwenden Sie ggf. flexible Leitungen für den Anschluss an der Turbopumpe.

WARNUNG

Verletzungsgefahr durch Abreißen der Turbopumpe mit Dämpfungskörper im Störungsfall

Plötzliches Blockieren des Rotors erzeugt gemäß ISO 27892 hohe zerstörende Drehmomente. Diese führen bei Verwendung eines Dämpfungskörpers höchstwahrscheinlich zum Abreißen der Turbopumpe. Die dabei freigesetzte Energie kann die gesamte Turbopumpe oder Bruchstücke aus deren Inneren durch den Raum schleudern. Potentiell gefährliche Gase können entweichen. Es besteht die Gefahr von schwersten Verletzungen, evtl. mit Todesfolge und großen Sachschäden.

- ► Ergreifen Sie bauseitig geeignete Sicherungsmaßnahmen zur Kompensation der auftretenden Drehmomente.
- ► Halten Sie vor der Installation eines Dämpfungskörpers unbedingt Rücksprache mit Pfeiffer Va-

2.3 Sicherheitsmaßnahmen

Informationspflicht zu möglichen Gefahren

Der Halter oder Betreiber des Produkts ist verpflichtet, jede Bedienperson auf Gefahren, die von diesem Produkt ausgehen, aufmerksam zu machen.

Jede Person, die sich mit der Installation, dem Betrieb oder der Instandhaltung des Produkts befasst, muss die sicherheitsrelevanten Teile dieses Dokuments lesen, verstehen und befolgen.

Verletzung der Konformität durch Veränderungen am Produkt

Die Konformitätserklärung des Herstellers erlischt, wenn der Betreiber das Originalprodukt verändert oder Zusatzeinrichtungen installiert.

 Nach Einbau in eine Anlage ist der Betreiber verpflichtet, vor deren Inbetriebnahme die Konformität des Gesamtsystems im Sinne der geltenden europäischen Richtlinien zu überprüfen und entsprechend neu zu bewerten.

Allgemeine Sicherheitsmaßnahmen im Umgang mit dem Produkt

- ▶ Beachten Sie alle geltenden Sicherheits- und Unfallverhütungsvorschriften.
- ▶ Überprüfen Sie regelmäßig die Einhaltung aller Schutzmaßnahmen.
- Setzen Sie kein Körperteil dem Vakuum aus.
- ▶ Gewährleisten Sie immer die sichere Verbindung zum Schutzleiter (PE).

- ▶ Lösen Sie während des Betriebs keine Steckerverbindungen.
- ▶ Beachten Sie die genannten Ausschaltprozeduren.
- Warten Sie vor Arbeiten am Hochvakuumanschluss den völligen Stillstand des Rotors ab (Drehzahl f = 0).
- ▶ Setzen Sie das Gerät nicht mit offenem Hochvakuumanschluss in Betrieb.
- ► Halten Sie Leitungen und Kabel von heißen Oberflächen (> 70 °C) fern.
- ▶ Befüllen oder betreiben Sie das Gerät niemals mit Reinigungsmittel oder Resten davon.
- ▶ Nehmen Sie keine eigenmächtigen Umbauten oder Veränderungen am Gerät vor.
- ▶ Beachten Sie die Schutzart des Geräts vor dem Einbau oder Betrieb in anderen Umgebungen.

2.4 Einsatzgrenzen des Produkts

Aufstellungsort	wettergeschützt (Innenräume)
Luftdruck	530 hPa bis 1060 hPa
Aufstellungshöhe	max. 5000 m
Rel. Luftfeuchte	max. 80 %, bei T < 31 °C,
	bis max. 50 % bei T < 40 °C
Schutzklasse	III
Überspannungskategorie	II
Zul. Schutzart	IP44,
	Type 12 gemäß UL 50E
Verschmutzungsgrad	2
Umgebungstemperatur	5 °C bis 30 °C bei Konvektionskühlung ohne Gasdurchsatz
	5 °C bis 35 °C bei Luftkühlung
	5 °C bis 40 °C bei Wasserkühlung
Maximal zulässiges umgebendes Magnetfeld	siehe Technische Daten
Maximal eingestrahlte Wärmeleistung	2,4 W
Maximal zulässige Rotortemperatur der Turbopum- pe	90 °C
Maximal zulässige Ausheiztemperatur am Hochva- kuumflansch	120 °C

Tab. 2: Zulässige Umgebungsbedingungen

Anmerkungen zu Umgebungsbedingungen

Die angegebenen zulässigen Umgebungstemperaturen gelten für den Betrieb der Turbopumpe bei maximal zulässigem Vorvakuumdruck oder bei maximalem Gasdurchsatz in Abhängigkeit der Kühlungsart. Die Turbopumpe ist durch eine redundante Temperaturüberwachung eigensicher.

- Die Reduzierung des Vorvakuumdrucks oder des Gasdurchsatzes ermöglicht den Betrieb der Turbopumpe auch bei höheren Umgebungstemperaturen.
- Bei Überschreiten der maximal zulässigen Betriebstemperatur der Turbopumpe reduziert die Antriebselektronik zuerst die Antriebsleistung und schaltet gegebenenfalls anschließend ab.

2.5 Bestimmungsgemäße Verwendung

- ▶ Verwenden Sie die Turbopumpe ausschließlich zur Vakuumerzeugung.
- ▶ Verwenden Sie die Turbopumpe nur in Verbindung mit einer geeigneten Vorpumpe, die den erforderlichen maximalen Vorvakuumdruck bereitstellen oder unterschreiten kann.
- ▶ Verwenden Sie die Turbopumpe nur in geschlossenen Innenräumen.
- ▶ Verwenden Sie die Turbopumpe nur zum Absaugen von trockenen und inerten Gasen.

2.6 Vorhersehbarer Fehlgebrauch

Bei Fehlgebrauch des Produkts erlischt jeglicher Haftungs- und Gewährleistungsanspruch. Als Fehlgebrauch gilt jede, auch unabsichtliche Verwendung, die dem Zweck des Produkts zuwider läuft, insbesondere:

- Herstellen der Spannungsversorgung ohne ordnungsgemäße Installation
- Installieren mit nicht spezifiziertem Befestigungsmaterial
- Pumpen von explosiven Medien
- Pumpen von korrosiven Medien
- Pumpen von kondensierenden Dämpfen
- Pumpen von Flüssigkeiten
- Pumpen von Stäuben
- · Betreiben mit unzulässig hohem Gasdurchsatz
- Betreiben mit unzulässig hohem Vorvakuumdruck
- Betreiben mit einer zu hohen eingestrahlten Wärmeleistung
- Betreiben in unzulässig hohen Magnetfeldern
- Betreiben im falschen Gasmodus
- Fluten mit unzulässig hohen Flutraten
- Einsetzen zur Druckerzeugung
- Einsetzen in Bereichen mit ionisierender Strahlung
- Betreiben in explosionsgefährdeten Bereichen
- Einsetzen in Anlagen, in denen stoßartige Belastungen und Vibrationen oder periodische Kräfte auf die Geräte einwirken
- Herbeiführen gefährdender Betriebszustände durch eine dem Prozess zuwiderlaufende Voreinstellung der Antriebselektronik
- Verwenden von Zubehör oder Ersatzteilen, die nicht in dieser Anleitung genannt sind

2.7 Personengualifikation

Die in diesem Dokument beschriebenen Arbeiten dürfen nur Personen ausführen, die die geeignete technische Ausbildung besitzen und über die nötigen Erfahrungen verfügen oder über Pfeiffer Vacuum an entsprechenden Schulungen teilgenommen haben.

Personen schulen

- 1. Schulen Sie technisches Personal am Produkt.
- Lassen Sie zu schulendes Personal nur unter Aufsicht durch geschultes Personal mit und an dem Produkt arbeiten.
- 3. Lassen Sie nur geschultes technisches Personal mit dem Produkt arbeiten.
- 4. Stellen Sie sicher, dass beauftragtes Personal vor Arbeitsbeginn diese Betriebsanleitung und alle mitgeltenden Dokumente gelesen und verstanden hat, insbesondere Sicherheits-, Wartungs- und Instandsetzungsinformationen.

2.7.1 Personenqualifikation sicherstellen

Fachkraft für mechanische Arbeiten

Alle mechanischen Arbeiten darf ausschließlich eine ausgebildete Fachkraft ausführen. Fachkraft im Sinne dieser Dokumentation sind Personen, die mit Aufbau, mechanischer Installation, Störungsbehebung und Instandhaltung des Produkts vertraut sind und über folgende Qualifikationen verfügen:

- Qualifizierung im Bereich Mechanik gemäß den national geltenden Vorschriften
- Kenntnis dieser Dokumentation

Fachkraft für elektrotechnische Arbeiten

Alle elektrotechnischen Arbeiten darf ausschließlich eine ausgebildete Elektrofachkraft ausführen. Elektrofachkraft im Sinne dieser Dokumentation sind Personen, die mit elektrischer Installation, Inbetriebnahme, Störungsbehebung und Instandhaltung des Produkts vertraut sind und über folgende Qualifikationen verfügen:

- Qualifizierung im Bereich Elektrotechnik gemäß den national geltenden Vorschriften
- Kenntnis dieser Dokumentation

Die Personen müssen darüber hinaus mit den gültigen Sicherheitsvorschriften und Gesetzen sowie den anderen in dieser Dokumentation genannten Normen, Richtlinien und Gesetzen vertraut sein. Die genannten Personen müssen die betrieblich ausdrücklich erteilte Berechtigung haben, Geräte, Systeme

und Stromkreise gemäß den Standards der Sicherheitstechnik in Betrieb zu nehmen, zu programmieren, zu parametrieren, zu kennzeichnen und zu erden.

Unterwiesene Personen

Alle Arbeiten in den übrigen Bereichen Transport, Lagerung, Betrieb und Entsorgung dürfen ausschließlich ausreichend unterwiesene Personen durchführen. Diese Unterweisungen müssen die Personen in die Lage versetzen, die erforderlichen Tätigkeiten und Arbeitsschritte sicher und bestimmungsgemäß durchführen zu können.

2.7.2 Personengualifikation bei Wartung und Reparatur

Weiterbildungskurse

Pfeiffer Vacuum bietet Weiterbildungskurse zu Wartung Level 2 und 3 an.

Entsprechend ausgebildete Personen sind:

- Wartung Level 1
 - Kunde (ausgebildete Fachkraft)
- Wartung Level 2
 - Kunde mit technischer Ausbildung
 - Pfeiffer Vacuum-Servicetechniker
- Wartung Level 3
 - Kunde mit Pfeiffer Vacuum-Serviceausbildung
 - Pfeiffer Vacuum-Servicetechniker

2.7.3 Mit Pfeiffer Vacuum weiterbilden

Für die optimale und störungsfreie Nutzung dieses Produkts bietet Pfeiffer Vacuum ein umfangreiches Angebot an Schulungen und technischen Trainings an.

Für weitere Auskünfte wenden Sie sich bitte an die technische Schulung von Pfeiffer Vacuum.

3 Produktbeschreibung

3.1 Funktion

Die Turbopumpe bildet mit der Antriebselektronik eine kompakte Einheit. Zur Spannungsversorgung dienen Pfeiffer Vacuum Netzteile.

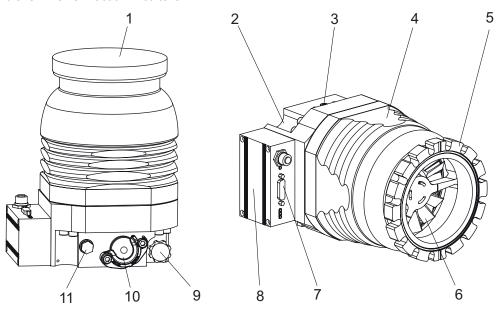


Abb. 2: Aufbau HiPace 350

- 1 Schutzdeckel für Hochvakuumflansch
- 2 Pumpenunterteil
- Erdungsanschluss (alternativ: Montagefläche für Luftkühlung)
- 4 Pumpengehäuse
- 5 Hochvakuumanschluss, DN 100 CF-F
- 6 Rotor

- 7 Multifunktionsanschluss "X3"
- 8 Antriebselektronik
- 9 Flutschraube
- 10 Blinddeckel für Vorvakuumanschluss, DN 16 ISO-KF
- 11 Sperrgasanschluss

3.1.1 Kühlung

- Konvektionskühlung
- Luftkühlung (optional)
- Wasserkühlung (optional)

Die Antriebselektronik regelt die Antriebsleistung bei Übertemperaturen automatisch herunter.

3.1.2 Rotorlager

Hybridgelagerte Turbopumpe

- Hochvakuumseite: verschleißfreies Permanentmagnetlager
- Vorvakuumseite: Kugellager mit Keramikkugeln

Turbopumpen der hybridgelagerten HiPace Serie verwenden für die Rotorlagerung auf der Vorvakuumseite Keramikkugellager. Die Betriebsmittelpumpe sorgt für eine definierte Schmierung und eine dauerhafte Funktion der Kugellager.

3.1.3 Antrieb

- Antriebselektronik TC 110
 - Betriebsspannung 24 V DC
- Antriebselektronik TC 120
 - Betriebsspannung 48 V DC

3.2 Produkt identifizieren

- ► Halten Sie zur sicheren Produktidentifikation bei der Kommunikation mit Pfeiffer Vacuum immer alle Angaben des Typenschilds bereit.
- ► Informieren Sie sich über Zertifizierungen durch Prüfsiegel auf dem Produkt oder unter <u>www.certipedia.com</u> mit der Firmen ID-Nr. <u>000021320</u>.

3.2.1 Produkttypen

Die Produktbezeichnung von Pfeiffer Vacuum Turbopumpen der Serie HiPace besteht aus ihrer Familienbezeichnung, der Größe, die sich am Saugvermögen der Vakuumpumpe orientiert und gegebenenfalls aus einer zusätzlichen Eigenschaftsbezeichnung.

Familie	Größe/Modell	Eigenschaft
HiPace	10 bis 2800	keine = Standardausführung
		mini = kompakte Bauweise
		U = Überkopfversion
		C = Korrosivgasausführung
		P = Prozess
		M = aktive Magnetlagerung
		T = Temperaturmanagement
		Plus = Vibrationsarm, geringes Magnetfeld
		E = hohe Effizienz
		H = hohe Kompression
		I = Ionenimplantation

Tab. 3: Produktbezeichnung von HiPace Turbopumpen

3.2.2 Produktmerkmale

Merkmal		Ausführung	
HV-Flansch	DN 100 ISO-K	DN 100 ISO-F	DN 100 CF-F
Flanschmaterial	Aluminium	Aluminium	Edelstahl

Tab. 4: Merkmale der Turbopumpen

3.3 Lieferumfang

- Turbopumpe mit Antriebselektronik
- Schutzdeckel f
 ür Hochvakuumanschluss
- Schutzdeckel für Vorvakuumanschluss
- Betriebsanleitung

4 Transport und Lagerung

4.1 Transport

WARNUNG

Gefahr schwerer Verletzungen durch herabfallende Gegenstände

Durch das Herabfallen von Gegenständen besteht die Gefahr von Verletzungen an Gliedmaßen bis hin zu Knochenbrüchen.

- ▶ Seien Sie beim Transport der Produkte von Hand besonders vorsichtig und aufmerksam.
- Stapeln Sie die Produkte nicht.
- Tragen Sie Schutzausrüstungen, z. B. Sicherheitsschuhe.

Empfehlung

Pfeiffer Vacuum empfiehlt, die Transportverpackung und die original Schutzdeckel aufzubewahren

Produkt sicher transportieren

- ► Transportieren Sie die Turbopumpe nur in den zulässigen Temperaturgrenzen.
- Achten Sie auf das auf dem Typenschild angegebene Gewicht.
- ► Transportieren oder versenden Sie die Turbopumpe möglichst in ihrer Orinialverpackung.
- ► Tragen Sie die Turbopumpe möglichst mit beiden Händen.
- ▶ Entfernen Sie die Schutzdeckel erst unmittelbar vor der Installation.

4.2 Lagerung

Empfehlung

Pfeiffer Vacuum empfiehlt die Lagerung der Produkte in ihrer original Transportverpackung.

Turbopumpe lagern

- 1. Verschließen Sie die Flanschöffnungen mit den original Schutzdeckeln.
- 2. Verschließen Sie weitere Anschlüsse (z. B. Flutanschluss) mit entsprechenden Originalteilen.
- 3. Lagern Sie die Turbopumpe nur in Innenräumen in den zulässigen Temperaturgrenzen.
- 4. In Räumen mit feuchter oder aggressiver Atmosphäre: Schweißen Sie die Turbopumpe zusammen mit einem Trockenmittel in einen Kunststoffbeutel luftdicht ein.

5 Installation

Die Installation der Turbopumpe und ihrer Befestigung ist von herausragender Bedeutung. Der Rotor der Turbopumpe dreht sich mit sehr hoher Geschwindigkeit. In der Praxis ist nicht auszuschließen, dass der Rotor den Stator berührt (z. B. durch Eindringen von Fremdkörpern in den Hochvakuumanschluss). Die freigesetzte kinetische Energie wirkt innerhalb von Sekundenbruchteilen auf das Gehäuse und auf die Verankerung der Turbopumpe.

Umfangreiche Tests und Berechnungen nach ISO 27892 belegen die Sicherheit der Turbopumpe sowohl gegen Crash (Zerstörung der Rotorflügel) als auch gegen Burst (Bruch der Rotorwelle). Die experimentellen und theoretischen Ergebnisse münden in Sicherheitsmaßnahmen und Empfehlungen für die ordnungsgemäße und sichere Befestigung der Turbopumpe.

5.1 Vorbereitende Arbeiten

WARNUNG

Gefahr von Schnittverletzungen an beweglichen, scharfkantigen Teilen bei Eingriff in den offenem Hochvakuumflansch

Bei offenem Hochvakuumflansch ist der Zugang zu scharfkantigen Teilen möglich. Eine manuelle Rotation des Rotors vergrößert die Gefahrensituation. Es besteht die Gefahr von Schnittverletzungen, bis hin zum Abtrennen von Körperteilen (z. B. Fingerkuppen). Es besteht die Gefahr des Einzugs von Haaren und losen Kleidungsstücken. Hineinfallende Gegenstände zerstören die Turbopumpe im späteren Betrieb.

- Entfernen Sie die original Schutzdeckel erst unmittelbar vor dem Anschluss des Hochvakuumflanschs
- ► Greifen Sie nicht in den Hochvakuumanschluss.
- ► Tragen Sie Schutzhandschuhe während der Installation.
- ▶ Nehmen Sie die Turbopumpe nicht mit offenen Vakuumanschlüssen in Betrieb.
- ► Führen Sie die mechanische Installation immer vor dem elektrischen Anschluss aus.
- ► Verhindern Sie den Zugang zum Hochvakuumanschluss der Turbopumpe von der Betreiberseite (z. B. offene Vakuumkammer).

Generelle Anmerkungen für die Installation von Vakuumkomponenten

- ▶ Wählen Sie den Aufstellungsort so, dass der Zugang zum Produkt und zu Versorgungsleitungen jederzeit möglich ist.
- ▶ Beachten Sie die in den Einsatzgrenzen genannten Umgebungsbedingungen.
- ► Sorgen Sie für größtmögliche Sauberkeit beim Montieren.
- ▶ Achten Sie darauf, dass Flanschbauteile bei der Installation fettfrei, staubfrei und trocken bleiben.

Aufstellungsort wählen

- 1. Beachten Sie die Hinweise für den Transport zum Aufstellungsort.
- 2. Stellen Sie ausreichende Kühlmöglichkeiten für die Turbopumpe sicher.
- 3. Installieren Sie geeignete Abschirmungen, wenn höhere als die maximal zugelassenen umgebenden Magnetfelder auftreten.
- 4. Installieren Sie geeignete Abschirmungen, damit die eingestrahlte Wärmeleistung die zulässigen Werte nicht überschreitet, wenn prozessbedingt hohe Temperaturen auftreten.
- 5. Beachten Sie die zulässigen Temperaturen für den Vakuumanschluss.

5.2 Turbopumpe am Unterteil befestigen

HINWEIS

Schäden an der Vakuumpumpe durch Krafteinwirkung an der Hochvakuumseite

Durch Befestigung am Pumpenunterteil und gleichzeitig starrer Rohrverbindung an der Hochvakuumseite besteht die Gefahr, dass Zwangskräfte auf die Turbopumpe wirken. Mechanische Belastungen bis hin zur Zerstörung der Turbopumpe sind die Folge.

- ▶ Stellen Sie eine flexible Verbindung am Hochvakuumflansch her.
- ▶ Beachten Sie die Anforderungen für die Befestigung der Turbopumpe am Unterteil.
- Stellen Sie sicher, dass im Falle eines plötzlichen Blockierens des Rotors die betreiberseitige Montageplatte alle auftretenden Drehmomente abführt.

Benötigte Hilfsmittel

- Lochkreis gemäß Abmessungen der Turbopumpe
- Befestigungsschrauben, Festigkeitsklasse ≥ 8.8, verzinkt
- Unterlegscheiben, DIN EN ISO 7090 oder DIN EN ISO 7092
- Kundenseitige Montageplatte

Benötigte Werkzeuge

- Innensechskantschlüssel, SW 6
- Gabelschlüssel, alternativ für Sechskantschrauben DIN 933
- Kalibrierter Drehmomentschlüssel (Anziehfaktor ≤ 1,6)

Turbopumpe am Unterteil befestigen

- 1. Entfernen Sie vorhandene Kunststoffstopfen aus dem Pumpenunterteil.
- 2. Stellen Sie die Turbopumpe aufrecht auf die Montageplatte.
- 3. Schrauben Sie das Pumpenunterteil mit der notwendigen Anzahl von zulässigen Befestigungsschrauben und Unterlegscheiben auf der Montageplatte fest.
 - Beachten Sie die angegebene Einschraubtiefe.
 - Beachten Sie das zulässige Anziehdrehmoment.

Turbopumpe	Montageplatte Mindeststärke Zug- festigkeit	Gewin- degröße	An- zahl	Einschraub- tiefe	Anziehdrehmo- ment
HiPace 350	3 mm > 270 MPa	M8	6	≥ 1,3 × d	25 Nm ± 10 %
HiPace 400					
HiPace 450					
HiPace 700					
HiPace 800					

Tab. 5: Anforderungen für die Befestigung der Turbopumpen am Unterteil

5.3 Hochvakuumseite anschließen

5.3.1 Anforderungen für die Auslegung des Gegenflansches

HINWEIS

Gefahr von Sachschäden durch fehlerhafte Auslegung des Gegenflansches

Unebenheiten am betreiberseitigen Gegenflansch führen auch bei ordnungsgemäßer Befestigung zu Verspannungen im Gehäuse der Vakuumpumpe. Undichtigkeiten oder negative Veränderungen der Laufeigenschaften sind die Folge.

- ► Halten Sie die Formtoleranzen für den Gegenflansch ein.
- ▶ Beachten Sie die maximale Abweichungen der Ebenheit über die gesamte Fläche.

Auf- und Anbauten auf dem Hochvakuumanschluss

Die Montage von Auf- und Anbauten auf dem Hochvakuumanschluss liegt in der Verantwortung des Betreibers. Die Belastbarkeit des Hochvakuumflansches ist spezifisch für die verwendete Turbopumpe.

- Das Gesamtgewicht von Aufbauten darf die angegebenen axialen Maximalwerte nicht überschreiten.
- Stellen Sie sicher, dass im Falle eines plötzlichen Blockierens des Rotors der Hochvakuumanschluss und die betreiberseitige Anlage alle auftretenden Drehmomente aufnehmen müssen.
- Verwenden Sie für den Hochvakuumanschluss der Turbopumpe nur die zugelassenen Befestigungssätze von Pfeiffer Vacuum.

Parameter	HiPace 350
Maximal auftretendes Drehmoment im Berstfall ¹⁾	3500 Nm
Maximal zulässige axiale Belastung auf dem Hochvakuumflansch ²⁾	1000 N (entspricht 100 kg)
Ebenheit	± 0,05 mm
Mindestzugfestigkeit des Flanschmaterials in allen Betriebszuständen im Bezug auf die Einschraubtiefe der Befestigungsschrauben	170 N/mm² bei 2,5 x d 270 N/mm² bei 1,5 x d
Maximal zulässige Rotortemperatur	90 °C

Tab. 6: Anforderungen für die Auslegung des kundenseitigen Hochvakuumanschlusses

5.3.2 Erdbebensicherheit berücksichtigen

HINWEIS

Schäden an der Vakuumpumpe durch äußere Erschütterungen

Bei Erdbeben oder anderen äußeren Erschütterungen besteht die Gefahr, dass der Rotor mit den Fanglagern in Kontakt kommt oder die Gehäusewand der Turbopumpe berührt. Mechanische Belastungen bis hin zur Zerstörung der Turbopumpe sind die Folge.

- Achten Sie darauf, dass alle Flansch- und Sicherheitsverbindungen die auftretenden Kräfte aufnehmen.
- ▶ Sichern Sie die Vakuumkammer gegen Verschieben oder Verkippen.

Das theoretisch ermittelte Drehmoment im Falle von Burst (Bruch der Rotorwelle) gemäß ISO 27892 wurde im experimentellen Test in keinem Fall erreicht.

²⁾ Eine einseitige Belastung ist nicht zulässig.

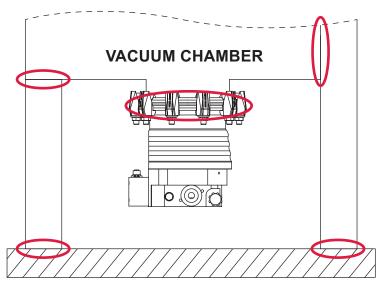


Abb. 3: Beispiel: Sicherung gegen Verschieben und Kippen durch externe Erschütterungen
Sicherheitsverbindung, kundenseitig

5.3.3 Splitterschutz oder Schutzgitter verwenden

Pfeiffer Vacuum Zentrierringe mit Splitterschutz oder Schutzgitter im Hochvakuumflansch schützen die Turbopumpe vor Fremdkörpern aus dem Rezipienten. Das Saugvermögen reduziert sich entsprechend der Durchgangsleitwerte und der Größe des Hochvakuumflansches.

Flanschgröße		Reduziertes Saugvermögen in % für Gasart				
	H ₂	He	N ₂	Ar		
Splitterschutz DN 100	5	7	24	24		
Schutzgitter DN 100	2	2	10	8		

Tab. 7: Reduzierung des Saugvermögens bei Verwendung eines Splitterschutzes oder Schutzgitters

Vorgehen

- ▶ Verwenden Sie bei ISO-Flanschen Zentrierringe mit Schutzgitter oder Splitterschutz.
- ► Setzen Sie bei CF-Flanschen Schutzgitter oder Splitterschutz immer mit den Klemmfahnen zum Rotor weisend in den Hochvakuumflansch ein.

5.3.4 Dämpfungskörper verwenden

WARNUNG

Verletzungsgefahr durch Abreißen der Turbopumpe mit Dämpfungskörper im Störungsfall

Plötzliches Blockieren des Rotors erzeugt gemäß ISO 27892 hohe zerstörende Drehmomente. Diese führen bei Verwendung eines Dämpfungskörpers höchstwahrscheinlich zum Abreißen der Turbopumpe. Die dabei freigesetzte Energie kann die gesamte Turbopumpe oder Bruchstücke aus deren Inneren durch den Raum schleudern. Potentiell gefährliche Gase können entweichen. Es besteht die Gefahr von schwersten Verletzungen, evtl. mit Todesfolge und großen Sachschäden.

- ► Ergreifen Sie bauseitig geeignete Sicherungsmaßnahmen zur Kompensation der auftretenden Drehmomente.
- Halten Sie vor der Installation eines Dämpfungskörpers unbedingt Rücksprache mit Pfeiffer Vacuum.

Pfeiffer Vacuum Dämpfungskörper sind für den Einsatz an vibrationsempfindlichen Anlagen geeignet.

Dämpfungskörper einbauen

- 1. Installieren Sie einen Dämpfungskörper nur mit senkrechtem Durchgang.
- 2. Berücksichtigen Sie den Strömungswiderstand.

- 3. Sichern Sie die Turbopumpe zusätzlich zum Hochvakuumflansch.
- 4. Beachten Sie die Befestigung von ISO-Flanschen.

5.3.5 Einbaulagen

Pfeiffer Vacuum Turbopumpen der Serie HiPace sind bei Verwendung von trocken verdichtenden Vorpumpen für den Einbau in **allen** Raumlagen geeignet.

Vermeiden Sie bei Verwendung ölgedichteter Vorpumpen Rückströmungen aus dem Vorvakuumbereich.

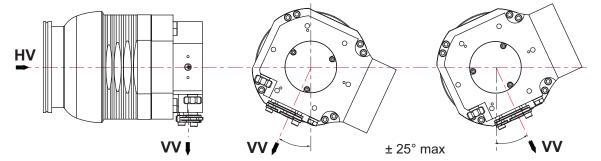


Abb. 4: Empfohlene Ausrichtung des Vorvakuumanschlusses bei Verwendung ölgedichteter Vorpumpen

Horizontale Einbaulage der Turbopumpe bei ölgedichteten Vorpumpen festlegen

- 1. Richten Sie den Vorvakuumanschluss immer senkrecht nach unten aus.
 - Zulässige Abweichung ± 25°
- 2. Stützen Sie Rohrverbindungen vor der Turbopumpe ab.
- 3. Lassen Sie keine Kräfte aus dem Rohrleitungssystem auf die Turbopumpe einwirken.
- 4. Belasten Sie den Hochvakuumflansch der Turbopumpe nicht einseitig.

5.3.6 ISO-K Flansch an ISO-K befestigen

ISO Flanschverbindungen

Bei der Verbindungsart von Flanschen der ISO-KF oder ISO-K Ausführung kann es trotz ordnungsgemäßer Installation zu einem Verdrehen im Falle eines plötzlichen Blockierens des Rotors kommen.

• Die Dichtheit der Flanschverbindung ist dabei nicht gefährdet.

Benötigte Werkzeuge

- Sechskantschlüssel SW 15
- Kalibrierter Drehmomentschlüssel (Anziehfaktor ≤ 1,6)

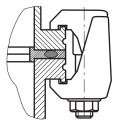


Abb. 5: Flanschverbindung ISO-K zu ISO-K, Klammerschraube

Verbindung mit Klammerschraube

- 1. Verwenden Sie für den Anschluss nur die zugelassenen Befestigungssätze von Pfeiffer Vacuum.
- 2. Verbinden Sie die Flansche gemäß der Abbildung mit den Bauteilen des Befestigungssatzes.
- 3. Verwenden Sie alle für die Turbopumpe vorgeschriebenen Bauteile.
- 4. Ziehen Sie die Klammerschrauben in 3 Schritten über Kreuz an.
 - Anziehdrehmoment: 5, 15, 25 ± 2 Nm

5.3.7 ISO-K Flansch an ISO-F befestigen

Die Verbindungsarten für die Installation ISO-K Flansch mit ISO-F Flansch sind:

- "Sechskantschraube und Gewindebohrung"
- "Stiftschraube und Gewindebohrung"
- "Stiftschraube und Durchgangsbohrung"

ISO Flanschverbindungen

Bei der Verbindungsart von Flanschen der ISO-KF oder ISO-K Ausführung kann es trotz ordnungsgemäßer Installation zu einem Verdrehen im Falle eines plötzlichen Blockierens des Rotors kommen.

• Die Dichtheit der Flanschverbindung ist dabei nicht gefährdet.

Benötigte Werkzeuge

- Sechskantschlüssel SW 15
- Kalibrierter Drehmomentschlüssel (Anziehfaktor ≤ 1,6)

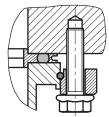


Abb. 6: Flanschverbindung ISO-K zu ISO-F, Sechskantschraube und Gewindebohrung

Verbindung von Sechskantschraube und Gewindebohrung

- 1. Verwenden Sie für den Anschluss nur die zugelassenen Befestigungssätze von Pfeiffer Vacuum.
- 2. Legen Sie den Überwurfflansch über den Hochvakuumflansch der Turbopumpe.
- 3. Setzen Sie den Sprengring in die seitliche Nut am Hochvakuumflansch der Turbopumpe.
- 4. Befestigen Sie die Turbopumpe gemäß der Abbildung mit Überwurfflansch, Sprengring und Zentrierring am Gegenflansch.
- 5. Verwenden Sie alle für die Turbopumpe vorgeschriebenen Bauteile.
- 6. Schrauben Sie die Sechskantschrauben in die Gewindebohrungen ein.
 - Beachten Sie die Mindestzugfestigkeit des Flanschmaterials und die Einschraubtiefe.
- 7. Sichern Sie die Sechskantschrauben in 3 Schritten über Kreuz.
 - Anziehdrehmoment: 5, 15, 25 ± 2 Nm

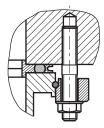
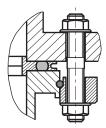



Abb. 7: Flanschverbindung ISO-K zu ISO-F, Stiftschraube und Gewindebohrung

Verbindung von Stiftschraube und Gewindebohrung

- 1. Verwenden Sie für den Anschluss nur die zugelassenen Befestigungssätze von Pfeiffer Vacuum.
- 2. Schrauben Sie die erforderliche Anzahl von Stiftschrauben mit dem kürzeren Einschraubende in die Bohrungen am Gegenflansch.
 - Beachten Sie die Mindestzugfestigkeit des Flanschmaterials und die Einschraubtiefe.
- 3. Legen Sie den Überwurfflansch über den Hochvakuumflansch der Turbopumpe.
- 4. Setzen Sie den Sprengring in die seitliche Nut am Hochvakuumflansch der Turbopumpe.
- Befestigen Sie die Turbopumpe gemäß der Abbildung mit Überwurfflansch, Sprengring und Zentrierring am Gegenflansch.
- 6. Verwenden Sie alle für die Turbopumpe vorgeschriebenen Bauteile.
- 7. Sichern Sie die Muttern in 3 Schritten über Kreuz.
 - Anziehdrehmoment: 5, 15, 25 ± 2 Nm

Abb. 8: Flanschverbindung ISO-K zu ISO-F, Stiftschraube und Durchgangsbohrung

Verbindung von Stiftschraube und Durchgangsbohrung

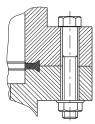
- 1. Verwenden Sie für den Anschluss nur die zugelassenen Befestigungssätze von Pfeiffer Vacuum.
- Legen Sie den Überwurfflansch über den Hochvakuumflansch der Turbopumpe.
- 3. Setzen Sie den Sprengring in die seitliche Nut am Hochvakuumflansch der Turbopumpe.
- 4. Befestigen Sie die Turbopumpe gemäß der Abbildung mit Überwurfflansch, Sprengring und Zentrierring am Gegenflansch.
- 5. Verwenden Sie alle für die Turbopumpe vorgeschriebenen Bauteile.
- 6. Ziehen Sie die Muttern in 3 Schritten über Kreuz an.
- 7. Anziehdrehmoment: 5, 15, 25 ± 2 Nm

5.3.8 CF-Flansch an CF-F befestigen

Die Verbindungsarten für die Installation CF- mit CF-Flansch sind:

- "Sechskantschraube und Durchgangsbohrung"
- "Stiftschraube und Gewindebohrung"
- "Stiftschraube und Durchgangsbohrung"

HINWEIS


Verlust der Dichtheit durch mangelhafte Installation von CF-Flanschen

Mangelhafte Sauberkeit beim Umgang mit CF-Flanschen und Kupferdichtungen führt zu Undichtigkeiten und möglichen Prozessschäden.

- ▶ Tragen Sie immer geeignete Handschuhe bevor Sie Bauteile berühren oder montieren.
- ► Montieren Sie alle Dichtungen trocken und fettfrei.
- ► Achten Sie auf beschädigte Oberflächen und Schneidkanten.
- ► Tauschen Sie beschädigte Bauteile aus.

Benötigte Werkzeuge

- Sechskantschlüssel, SW 13
- Kalibrierter Drehmomentschlüssel (Anziehfaktor ≤ 1,6)

Abb. 9: Flanschverbindung CF-F, Sechskantschraube und Durchgangsbohrung

Verbindung von Sechskantschraube und Durchgangsbohrungen

- 1. Verwenden Sie für den Anschluss nur die zugelassenen Befestigungssätze von Pfeiffer Vacuum.
- 2. Sofern verwendet: Setzen Sie das Schutzgitter oder den Splitterschutz mit den Klemmfahnen nach unten in den Hochvakuumflansch der Turbopumpe ein.
- 3. Legen Sie die Dichtung genau in die Ausdrehung.
- 4. Verbinden Sie die Flansche gemäß der Abbildung mit den Bauteilen des Befestigungssatzes.
- 5. Ziehen Sie die Schraubverbindungen umlaufend an.
 - Anziehdrehmoment: 22 ± 2 Nm
- 6. Überprüfen Sie abschließend das Drehmoment, da durch das Fließen des Dichtungsmaterials ein Nachziehen der Schrauben erforderlich sein kann.

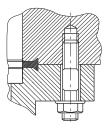


Abb. 10: Flanschverbindung CF-F, Siftschraube und Gewindebohrung

Verbindung von Stiftschraube und Gewindebohrung

- 1. Verwenden Sie für den Anschluss nur die zugelassenen Befestigungssätze von Pfeiffer Vacuum.
- 2. Schrauben Sie die erforderliche Anzahl von Stiftschrauben mit dem kürzeren Einschraubende in die Bohrungen am Gegenflansch.
- 3. Sofern verwendet: Setzen Sie das Schutzgitter oder den Splitterschutz mit den Klemmfahnen nach unten in den Hochvakuumflansch der Turbopumpe ein.
- 4. Legen Sie die Dichtung genau in die Ausdrehung.
- 5. Verbinden Sie die Flansche gemäß der Abbildung mit den Bauteilen des Befestigungssatzes.
- 6. Ziehen Sie die Schraubverbindungen umlaufend an.
 - Anziehdrehmoment: 22 ± 2 Nm
- 7. Überprüfen Sie abschließend das Drehmoment, da durch das Fließen des Dichtungsmaterials ein Nachziehen der Schrauben erforderlich sein kann.

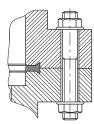


Abb. 11: Flanschverbindung CF-F, Siftschraube und Durchgangsbohrung

Verbindung von Stiftschraube und Durchgangsbohrung

- 1. Verwenden Sie für den Anschluss nur die zugelassenen Befestigungssätze von Pfeiffer Vacuum.
- 2. Sofern verwendet: Setzen Sie das Schutzgitter oder den Splitterschutz mit den Klemmfahnen nach unten in den Hochvakuumflansch der Turbopumpe ein.
- 3. Legen Sie die Dichtung genau in die Ausdrehung.
- 4. Verbinden Sie die Flansche gemäß der Abbildung mit den Bauteilen des Befestigungssatzes.
- 5. Ziehen Sie die Schraubverbindungen umlaufend an.
 - Anziehdrehmoment: 22 ± 2 Nm
- 6. Überprüfen Sie abschließend das Drehmoment, da durch das Fließen des Dichtungsmaterials ein Nachziehen der Schrauben erforderlich sein kann.

5.4 Vorvakuumseite anschließen

WARNUNG

Lebensgefahr durch Vergiftung bei Austritt von toxischen Prozessmedien an beschädigten Anschlüssen

Plötzliches Verdrehen der Turbopumpe im Störungsfall führt zu Beschleunigungen von Anbauten. Es besteht das Risiko von Beschädigungen und Leckagen an kundenseitigen Anschlüssen (z.B. Vorvakuumleitung). Der Austritt von Prozessmedien ist die Folge. Bei Prozessen mit toxischen Medien besteht Verletzungs- und Lebensgefahr durch Vergiftung.

- ► Halten Sie an der Turbopumpe anzuschließende Massen möglichst gering.
- ▶ Verwenden Sie ggf. flexible Leitungen für den Anschluss an der Turbopumpe.

Geeignete Vorpumpe

Verwenden Sie die Turbopumpe nur in Verbindung mit einer geeigneten Vorpumpe, die den erforderlichen maximalen Vorvakuumdruck bereitstellen oder unterschreiten kann. Setzen Sie zum Erreichen des Vorvakuumdrucks eine geeignete Vakuumpumpe oder einen Pumpstand aus dem Pfeiffer Vacuum Portfolio ein.

In diesem Fall ist die Steuerung der Vorpumpe auch direkt über die Schnittstellen der Antriebselektronik der Turbopumpe möglich (z. B. Relaisbox oder Verbindungskabel).

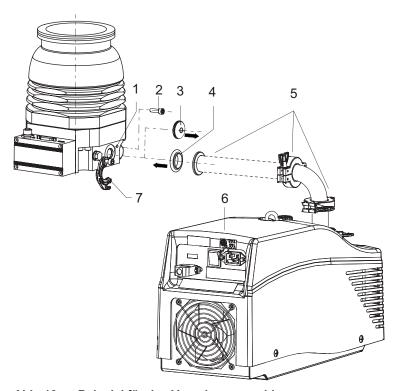


Abb. 12: Beispiel für den Vorvakuumanschluss

- 1 Vorvakuumanschluss der Turbopumpe
- 2 Zylinderschraube
- 3 Blindflansch
- 4 Zentrierring

- 5 Vakuumkomponenten DN 16 ISO-KF
- 6 Vorpumpe (z.B. Mehrstufige Wälzkolbenpumpe)
- 7 Klammerverschluss

Vorvakuumanschluss herstellen

Benötigte Werkzeuge

- Innensechskantschlüssel, SW 5 mm
- Kalibrierter Drehmomentschlüssel (Anziehfaktor ≤ 1,6)
- 1. Demontieren Sie den Blindflansch am Vorvakuumanschluss und bewahren den Blindflansch auf.
- Planen Sie bei starren Rohrverbindungen Federungskörper zur Dämpfung von externen Vibrationen ein.
- Installieren Sie eine Vorvakuumverbindung mit Kleinflanschbauteilen, z.B. Verbindungselemente und Rohrbauteile DN 16 ISO-KF aus dem Pfeiffer Vacuum Komponentenprogramm.
- 4. Achten Sie auf Maßnahmen gegen Rückströmung von Betriebsmitteln oder Kondensat aus dem Vorvakuumbereich.
- 5. Beachten Sie für den Anschluss und Betrieb der Vorpumpen oder Pumpstände die Informationen aus deren Betriebsanleitung.
- 6. Ziehen Sie die Zylinderschrauben am Klammerverschluss gleichmäßig an.
 - Anziehdrehmoment: 2 Nm.

5.5 Zubehör anschließen

Installation und Betrieb von Zubehör

Pfeiffer Vacuum bietet für Ihre Produkte eine Reihe von speziell abgestimmtem Zubehör an.

Informationen und Bestellmöglichkeiten zu zugelassenem <u>Zubehörportfolio für hybridgelagerte Turbopumpen finden Sie online.</u>

Zubehöranschluss der Antriebselektronik TC 110 und TC 120

- Die Verwendung von Pfeiffer Vacuum Zubehör über die Antriebselektronik TC 110 und TC 120 ist über entsprechende Verbindungskabel bzw. Adapter am Multifunktionsanschluss X3 möglich.
- Konfiguration des gewünschten Zubehörausgangs über RS-485 mittels Pfeiffer Vacuum Steuergeräten oder PC.
- Detaillierte Hinweise finden Sie in der Betriebsanleitung der Antriebselektronik.

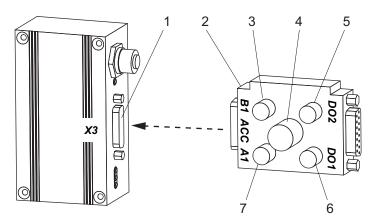


Abb. 13: Beispiel für den Zubehöranschluss über Adapter TCS 12

- Multifunktionsanschluss X3
- 2 Adapter TCS
- 3 Zubehöranschluss B1
- 4 Anschluss RS-485
- 5 Digitalausgang DO2
- 6 Digitalausgang DO1
- 7 Zubehöranschluss A1

Zubehör verwenden

- 1. Beachten Sie die Installationshinweise in den Betriebsanleitungen des betreffenden Zubehörs.
- 2. Achten Sie auf die vorhandene Konfiguration bestehender Anschlüsse und Steuerleitungen.
- 3. Verwenden Sie ggf. ein Pfeiffer Vacuum Steuergerät zum konfigurieren.

5.6 Elektrische Versorgung anschließen

WARNUNG

Lebensgefahr durch fehlende Netztrenneinrichtung

Die Vakuumpumpe und die Antriebselektronik sind **nicht** mit einer Netztrenneinrichtung (Hauptschalter) ausgestattet.

- ▶ Installieren Sie eine Netztrenneinrichtung gemäß SEMI-S2.
- ► Sehen Sie einen Leistungsschalter mit einem Ausschaltvermögen von min. 10.000 A vor.

WARNUNG

Verletzungsgefahr aufgrund nicht sachgerechter Installation

Durch unsichere oder nicht sachgerechte Installation entstehen gefährliche Situationen.

- ▶ Nehmen Sie keine eigenmächtigen Umbauten oder Veränderungen am Gerät vor.
- ▶ Sorgen Sie für die Integration in einen Not-Aus-Sicherheitskreis.

5.6.1 Turbopumpe erden

Pfeiffer Vacuum empfiehlt den Anschluss eines geeigneten Erdungskabels, um applikative Störeinflüsse abzuleiten.

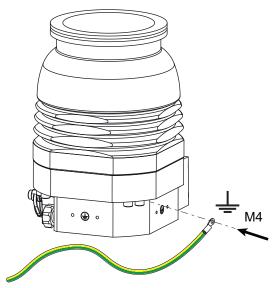


Abb. 14: Beispiel: Anschluss des Erdungskabels

- 1. Verwenden Sie den Erdungsanschluss der Turbopumpe (M4 Innengewinde).
- 2. Führen Sie den Anschluss nach den lokal geltenden Bestimmungen durch.

5.6.2 Elektrischen Anschluss herstellen

A GEFAHR

Lebensgefahr durch elektrischen Schlag

Nicht spezifizierte oder nicht zugelassene Netzteile führen zu schwersten Verletzungen bis hin zum Todesfall.

- ► Achten Sie darauf, dass das Netzteil den Anforderungen für doppelte Isolierung zwischen Netzeingangsspannung und Ausgangsspannung gemäß IEC 61010-1, IEC 60950-1 und IEC 62368-1 entspricht.
- ► Achten Sie darauf, dass das Netzteil den Anforderungen für Ableitströme gemäß IEC 61010-1, IEC 60950-1 und IEC 62368-1 entspricht.
- ▶ Verwenden Sie möglichst original Netzteile oder ausschließlich Netzteile, die den geltenden Sicherheitsbestimmungen entsprechen.

WARNUNG

Gefahr von Schnittverletzungen durch unvorhergesehenen automatischen Hochlauf

Das Verwenden von Gegensteckern für die Antriebselektronik (Zubehör), ermöglicht den sofortigen Hochlauf der Vakuumpumpe nach Herstellen der Spannungsversorgung. Das Aufstecken von Gegensteckern vor oder während der Installation führt zu der Gefahr von Schnittverletzungen an rotierenden scharfkantigen Teilen im offenliegenden Hochvakuumflansch.

- ▶ Verwenden Sie die Gegenstecker nur nach der mechanischen Installation.
- Schalten Sie die Turbopumpe nur unmittelbar vor dem Betrieb ein.

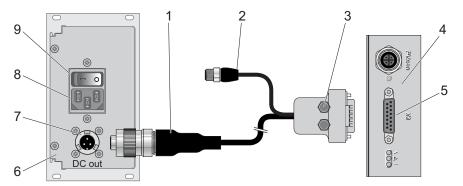


Abb. 15: Antriebselektronik mit Netzteil verbinden

- Verbindungskabel
- Anschluss RS 485 (optional)
- Anschluss accessory (optional)
 Antriebselektronik der Turbopumpe
- Multifunktionsanschluss X3
- Netzteil | Steuergerät mit Netzteil
- Anschluss DCout
- 8 Netzanschluss ACin
- Hauptschalter

Für die Spannungsversorgung der Antriebselektronik stehen original Netzteile (z. B. TPS) oder Steuergeräte sowie Verbindungskabel zur Verfügung.

Typ des Verbindungskabels	Funktion
Verbindungskabel mit Schnittstelle RS-485 und Brücken von TC 110 TC 120 zu Netzteil	 Spannungsversorgung über Netzteil Automatischer Hochlauf durch Brücken an Pin 2, 5, 7 Anschluss an Steuergerät über RS-485
Verbindungskabel mit Schnittstelle RS-485 und Zubehöranschlüssen von TC 110 TC 120 zu Netzteil	 Spannungsversorgung über Netzteil Anschluss von Zubehörgeräten mit M8-Stecker Anschluss an Steuergerät über RS-485
Verbindungskabel mit Brücken von TC 110 TC 120 zu Netzteil	 Spannungsversorgung über Netzteil Automatischer Hochlauf durch Brücken an Pin 2, 5, 7
Verbindungskabel mit Brücken und Zubehöranschlüssen von TC 110 TC 120 zu Netzteil	 Spannungsversorgung über Netzteil Automatischer Hochlauf durch Brücken an Pin 2, 5, 7 Anschluss von Zubehörgeräten mit M8-Stecker

Antriebselektronik anschließen

- 1. Achten Sie auf die gültige Versorgungsspannung.
- 2. Achten Sie darauf, dass der Hauptschalter des Netzteils vor dem Anschluss ausgeschaltet ist.
- 3. Verwenden Sie ein passendes Verbindungskabel aus dem Pfeiffer Vacuum Zubehörprogramm.
- 4. Stecken Sie den 15-poligen Stecker des Verbindungskabels in den Anschluss "X3" an der Antriebselektronik und sichern ihn.
- 5. Stecken Sie das Verbindungskabel in den Anschluss "DCout" am Netzteil und schließen Sie die Bajonettverriegelung.
- 6. Wenn Sie ein Pfeiffer Vacuum Steuergerät verwenden: Schließen Sie den Anschluss "RS-485" mit passendem Verlängerungskabel an das Steuergerät an.

6 Betrieb

6.1 Inbetriebnahme

WARNUNG

Gefahr von Schnittverletzungen durch unvorhergesehenen automatischen Hochlauf

Das Verwenden von Gegensteckern für die Antriebselektronik (Zubehör), ermöglicht den sofortigen Hochlauf der Vakuumpumpe nach Herstellen der Spannungsversorgung. Das Aufstecken von Gegensteckern vor oder während der Installation führt zu der Gefahr von Schnittverletzungen an rotierenden scharfkantigen Teilen im offenliegenden Hochvakuumflansch.

- ▶ Verwenden Sie die Gegenstecker nur nach der mechanischen Installation.
- Schalten Sie die Turbopumpe nur unmittelbar vor dem Betrieb ein.

HINWEIS

Zerstörung der Vakuumpumpe durch zu hohen Energieeintrag während des Betriebs

Die gleichzeitige Belastung durch hohe Antriebsleistung (Gasdurchsatz, Vorvakuumdruck), hohe Wärmeeinstrahlung oder hohe magnetische Felder führt zu einer unkontrollierten Aufheizung des Rotors und möglicherweise zur Zerstörung der Vakuumumpe.

► Halten Sie Rücksprache mit Pfeiffer Vacuum vor der Kombination unterschiedlicher Belastungen auf die Vakuumpumpe. Es gelten reduzierte Grenzwerte.

HINWEIS

Zerstörung der Turbopumpe durch Gase mit zu hohen Molekülmassen

Das Fördern von Gasen mit unzulässig hohen Molekülmassen führt zur Zerstörung der Turbopumpe.

- ▶ Achten Sie auf den korrekt eingestellten Gasmodus [P:027] in der Antriebselektronik.
- ► Halten Sie Rücksprache mit Pfeiffer Vacuum, bevor Sie Gase mit größeren Molekülmassen (> 80) einsetzen.

Wichtige Einstellwerte und funktionsrelevante Kenngrößen sind als Parameter werksseitig in der Antriebselektronik der Vakuumpumpe programmiert. Jeder Parameter besitzt eine dreistellige Nummer und eine Benennung. Betrieb und Steuerung durch Parameter ist über ein Pfeiffer Vacuum Steuergerät oder über RS-485 extern mittels Pfeiffer Vacuum Protokoll möglich.

Parameter	Name	Bezeichnung	Einstellung
[P:027]	GasMode	Gasmodus	0 = schwere Gase
[P:035]	CfgAccA1	Zubehöranschluss A1	0 = Lüfter (Dauerbetrieb)
[P:036]	CfgAccB1	Zubehöranschluss B1	1 = Flutventil
[P:700]	RUTimeSVal	Sollwert Hochlaufzeit	8 min.
[P:701]	SpdSwPt1	Drehzahlschaltpunkt 1	80 %
[P:707]	SpdSVal	Vorgabe Drehzahlstellbetrieb	65 %
[P:708]	PwrSVal	Vorgabe Leistungsaufnahme	100 %
[P:720]	VentSpd	Flutdrehzahl verzögertes Fluten	50 %
[P:721]	VentTime	Flutzeit verzögertes Fluten	3600 s

Tab. 8: Werkseitige Einstellung der Antriebselektronik von Turbopumpen bei Auslieferung

Hinweise für die Inbetriebnahme der Turbopumpe

- 1. Achten Sie bei der Verwendung von Wasserkühlung auf Kühlwasserzufluss und Durchfluss.
- Achten Sie bei der Verwendung von Sperrgas auf Sperrgaszufuhr und Durchfluss.
- 3. Stellen Sie die Stromversorgung für das Netzteil bereit.

6.2 Betriebsarten

Der Betrieb der Turbopumpe ist auf verschiedene Arten möglich.

- Betrieb ohne Bediengerät
- Betrieb über Anschluss "X3"
- Betrieb über Schnittstelle RS-485 von Pfeiffer Vacuum Steuergerät oder PC
- Betrieb über Anschluss "E74"
- Betrieb über Feldbus

6.2.1 Betrieb ohne Bedieneinheit

Automatischer Anlauf

Nach Überbrücken der Kontakte Pin 2, 5, 7 am Anschluss "X3" oder bei Verwendung eines Verbindungskabels "mit Brücken" und Anlegen der Versorgungsspannung läuft die Turbopumpe sofort hoch.

Hiweise für den Betrieb ohne Bedieneinheit

- Verwenden Sie nur die zugelassenen Pfeiffer Vacuum Verbindungskabel mit Brücken auf dem Anschluss "X3" der Antriebselektronik.
- 2. Schalten Sie die Stromversorgung der Turbopumpe erst unmittelbar vor dem Betrieb ein.

Nach Anlegen der Betriebsspannung führt die Antriebselektronik einen Selbsttest zur Überprüfung der Versorgungsspannung durch. Nach erfolgreich abgeschlossenem Selbsttest startet die Turbopumpe und aktiviert verbundene Zusatzeinrichtungen entsprechend der Konfiguration.

6.2.2 Betrieb über Multifunktionsanschluss "X3"

Die Fernbedienung ist über den 15-poligen D-Sub-Anschluss mit der Bezeichnung "X3" an der Antriebselektronik möglich. Die bedienbaren Einzelfunktionen sind durch "SPS-Pegel" dargestellt.

Hiweise für den Betrieb mit Fernbedienung

▶ Beachten Sie die Betriebsanleitung der Antriebselektronik.

6.2.3 Betrieb über Anschluss "E74"

Die Bedienung ist über den 15-poligen D-Sub-Anschluss mit der Bezeichnung "E74" an der Antriebselektronik möglich. Der Anschluss enthält neben den in der Richtlinie SEMI E74-0301 definierten Signalen ein invertiertes Alarmsignal und einen Analogausgang.

Hinweise für den Betrieb mit E74

▶ Beachten Sie die Betriebsanleitung der Antriebselektronik in E74 Ausführung.

6.2.4 Betrieb über Pfeiffer Vacuum Steuergerät

Der Anschluss eines Pfeiffer Vacuum Steuergeräts ermöglicht die Steuerung der Turbopumpe über die in der Antriebselektronik verankerten Parameter.

Steuergerät verwenden

- 1. Beachten Sie für den Umgang mit den Pfeiffer Vacuum Steuergeräten die dazugehörende Betriebsanleitung:
 - Betriebsanleitung verfügbar im <u>Download Center</u>.
- Beachten Sie die Betriebsanleitung der Antriebselektronik aus dem Lieferumfang der Vakuumpumpe.
- 3. Schließen Sie das Steuergerät am Multifunktionsanschluss "X3" der Antriebselektronik an.
 - Verwenden Sie dazu ein geeignetes Verbindungskabel mit Anschluss "RS-485" oder einen Adapter für "X3".
- Schalten Sie die Stromversorgung der Turbopumpe über das externe Netzteil oder das Steuergerät mit integriertem Netzteil ein.

6.2.5 Betrieb über Feldbus

Die Einbindung und der Betrieb von Pfeiffer Vacuum Turbopumpen in ein kundenseitiges Feldbussystem ist bei Verwendung einer Antriebselektronik mit entsprechendem Anschlusspanel möglich.

Zur Verfügung stehen:

Profibus

Hiweise für den Betrieb mit Feldbus

▶ Beachten Sie die Betriebsanleitung der Antriebselektronik mit entsprechendem Anschlusspanel.

6.3 Turbopumpe einschalten

WARNUNG

Verbrennungsgefahr an heißen Oberflächen bei Verwendung von Zusatzeinrichtungen zum Heizen für den Betrieb

Die Verwendung von Zusatzeinrichtungen zum Heizen der Vakuumpumpe oder zur Prozessoptimierung erzeugt sehr hohe Temperaturen an berührbaren Oberflächen. Es besteht Verbrennungsgefahr.

- ► Richten Sie agf. einen Berührungsschutz ein.
- ▶ Bringen Sie ggf. dafür vorgesehene Warnaufkleber an den Gefahrenstellen an.
- Sorgen Sie für ausreichend Abkühlung vor Arbeiten an der Vakuumpumpe oder in deren Umgebung.
- ► Tragen Sie Schutzausrüstung, z.B. Handschuhe.

WARNUNG

Gefahr schwerer Verletzungen bei Zerstörung der Vakuumpumpe durch Überdruck

Gaseintritt mit sehr hohem Überdruck führt zur Zerstörung der Vakuumpumpe. Es besteht die Gefahr schwerer Verletzungen durch herausgeschleuderte Objekte.

- ▶ Überschreiten Sie nicht den zulässigen Einlassdruck von 1500 hPa (abs.) an Ansaugseite oder Flut- und Sperrgasanschluss.
- Stellen Sie sicher, dass prozessbedingt hohe Überdrücke nicht direkt in die Vakuumpumpe gelangen.

Turbopumpe einschalten

- ▶ Verbinden Sie das Netzteil mit dem betreiberseitigen Versorgungsnetz.
- ► Schalten Sie das Netzteil ein.

6.4 Betriebsüberwachung

6.4.1 Betriebsanzeige über LED

LEDs an der Antriebselektronik zeigen grundlegende Betriebszustände der Vakuumpumpe an. Eine differenzierte Fehler- und Warnungsanzeige ist nur bei Betrieb mit Pfeiffer Vacuum Steuergerät oder PC möglich.

LED	Symbol	LED Status	Anzeige	Bedeutung
		Aus		stromlos
Grün		Ein, blitzend		"Pumpstand AUS", Drehzahl ≤ 60 min ⁻¹
		Ein, invers blitzend		"Pumpstand EIN", Solldrehzahl nicht erreicht
		Ein, konstant		"Pumpstand EIN", Solldrehzahl erreicht
		Ein, blinkend		"Pumpstand AUS", Drehzahl > 60 min ⁻¹
Gelb	A	Aus		keine Warnung
	Δ	Ein, konstant		Warnung
Rot	•	Aus		kein Fehler, keine Warnung
	ነ	Ein, konstant		Fehler

Tab. 9: Verhalten und Bedeutung der LEDs an der Antriebselektronik

6.4.2 Temperaturüberwachung

Bei Überschreiten von Schwellenwerten überführen Ausgabesignale von Temperatursensoren die Turbopumpe in einen sicheren Zustand. Abhängig vom Typ sind Temperaturschwellenwerte für Warnungen und Fehlermeldungen unveränderlich in der Antriebselektronik gespeichert. Zu Informationszwecken sind im Parametersatz verschiedene Statusabfragen eingerichtet.

- Um das Abschalten der Turbopumpe zu vermeiden, reduziert die Antriebselektronik die Leistungsaufnahme bereits bei Überschreiten der Warnschwelle für Übertemperatur.
 - Beispiele sind unzulässige Motortemperatur oder unzulässig hohe Gehäusetemperatur.
- Weitere Reduktion der Antriebsleistung und somit sinkende Drehzahl führt möglicherweise zum Unterschreiten des eingestellten Drehzahlschaltpunktes. Die Turbopumpe schaltet ab.
- Bei Überschreiten der Fehlerschwelle für Übertemperatur schaltet die Turbopumpe sofort ab.

6.5 Ausschalten und Fluten

Empfehlung

Belüften Sie die Turbopumpe nach dem Ausschalten. Dadurch verhindern Sie, dass Partikel aus dem Vorvakuumbereich in das Vakuumsystem zurückströmen.

6.5.1 Ausschalten

Hinweise für das Ausschalten der Turbopumpe

- 1. Schalten Sie die Turbopumpe über das Steuergerät oder die Fernbedienung aus.
- 2. Schließen Sie die Vorvakuumleitung.
- 3. Schalten Sie ggf. die Vorpumpe ab.
- 4. Fluten Sie die Turbopumpe.
- 5. Schließen Sie die Versorgungsleitungen (z.B. für Kühlwasser oder Sperrgas).

6.5.2 Fluten

VORSICHT

Gefahr von Verletzungen durch Kontakt mit Vakuum beim Belüften

Während des Belüftens der Vakuumpumpe besteht die Gefahr geringer Verletzungen durch unmittelbaren Kontakt von Körperteilen mit dem Vakuum, z.B. Hämatome.

- ▶ Drehen Sie die Flutschraube beim Belüften nicht vollständig aus dem Gehäuse.
- ▶ Halten Sie Abstand zu automatischen Fluteinrichtungen, wie Flutventilen.

HINWEIS

Beschädigung der Turbopumpe durch unzulässig schnellen Druckanstieg beim Fluten

Unzulässig hohe Druckanstiegsraten belasten den Rotor und das Magnetlager der Turbopumpe schwer. Beim Fluten sehr kleiner Volumina in der Vakuumkammer oder der Turbopumpe besteht die Gefahr von unkontrollierbaren Druckanstiegen. Mechanische Schäden an der Turbopumpe bis zum Ausfall sind die Folge.

- ► Halten Sie die vorgeschriebene maximale Druckanstiegsgeschwindigkeit von 15 hPa/s ein.
- ▶ Vermeiden Sie manuelles und unkontrolliertes Fluten von sehr kleinen Volumina.
- Verwenden Sie ggf. ein Flutventil aus dem Pfeiffer Vacuum Zubehörprogramm.

Manuell fluten

Fluten von Hand beschreibt die Standardprozedur des Belüftens für den Turbopumpstand.

- 1. Achten Sie darauf, dass das Vakuumsystem ausgeschaltet ist.
- 2. Öffnen Sie die schwarze Flutschraube an der Turbopumpe höchstens für 1 Umdrehung.
- 3. Warten Sie den Druckausgleich auf Atmosphärendruck im Vakuumsystem ab.
- 4. Schließen Sie die Flutschraube wieder.

Pfeiffer Vacuum Flutventil verwenden

Das Pfeiffer Vacuum Flutventil ist ein optionales Zubehör für die Installation an der Turbopumpe.

Das Flutventil ist stromlos geschlossen. Die Steuerung erfolgt über die Antriebselektronik der Turbopumpe und die Einstellungen der Parameter [P:012] und [P:030]. Bei Netzausfall liefert die nachlaufende Turbopumpe ausreichend Energie, um einen ordentlichen Flutvorgang einzuleiten. Bei Netzwiederkehr wird der Flutvorgang abgebrochen.

- ► Schalten Sie die Turbopumpe ab.
 - Der Flutvorgang startet automatisch.

Flutdrehzahl [P:720]	Flutdauer [P:721]	Flutdauer bei Netzausfall
50 % der Nenndrehzahl	3600 s	3600 s

Tab. 10: Werkseinstellungen für verzögertes Fluten bei Turbopumpen

Generelle Hinweise für schnelles Fluten

Wir empfehlen das schnelle Belüften größerer Volumina in 4 Schritten durchzuführen.

- 1. Verwenden Sie ein Pfeiffer Vacuum Flutventil für die Turbopumpe oder stimmen Sie den Ventilquerschnitt auf die Größe des Rezipienten und die maximale Flutrate ab.
- 2. Belüften Sie das Vakuumsystem mit einer Druckanstiegsgeschwindigkeit von maximal **15 hPa/s** für die Dauer von 20 Sek.
- 3. Belüften Sie das System anschließend mit einem beliebig großen, zweiten Flutventil, z. B. direkt an der Vakuumkammer.
- 4. Warten Sie den Druckausgleich auf Atmosphärendruck im Vakuumsystem ab.

7 Wartung

7.1 Allgemeine Wartungshinweise

WARNUNG

Lebensgefahr durch elektrischen Schlag bei Wartungs- und Servicearbeiten

Das Gerät ist nur bei gezogenem Netzstecker und stillstehender Turbopumpe völlig spannungsfrei. Es besteht Lebensgefahr durch elektrischen Schlag bei Berührung spannungsführender Komponenten

- ► Schalten Sie vor allen Arbeiten den Hauptschalter aus.
- ► Warten Sie den Stillstand der Turbopumpe ab (Drehzahl f = 0).
- ► Ziehen Sie den Netzstecker vom Gerät ab.
- Sichern Sie das Gerät gegen unbeabsichtigtes Wiedereinschalten.

WARNUNG

Gesundheitsgefahr durch Vergiftung an toxisch kontaminierten Bauteilen oder Geräten

Toxische Prozessmedien führen zur Kontamination der Geräte oder Teilen davon. Bei Wartungsarbeiten besteht Gesundheitsgefahr durch Kontakt mit diesen giftigen Substanzen. Die unzulässige Beseitigung toxischer Substanzen führt zu Umweltschäden.

- ► Treffen Sie geeignete Sicherheitsvorkehrungen und verhindern Sie Gesundheitsgefährdungen und Umweltbelastungen durch toxische Prozessmedien.
- ▶ Dekontaminieren Sie die betreffenden Teile vor der Ausführung von Wartungsarbeiten.
- ► Tragen Sie Schutzausrüstung.

WARNUNG

Schnittverletzungen an beweglichen, scharfkantigen Teilen bei Eingriff in den offenem Hochvakuumanschluss

Unsachgemäße Behandlung der Turbopumpe vor Wartungsarbeiten führt zu Gefahrensituationen mit Verletzungsrisiko. Es besteht die Gefahr von Schnittverletzungen durch Zugang an scharfkantigen, rotierenden Teilen beim Ausbau der Turbopumpe.

- ► Warten Sie den Stillstand der Turbopumpe ab (Drehzahl f = 0).
- Schalten Sie die Turbopumpe ordentlich aus.
- ► Sichern Sie die Turbopumpe gegen Wiedereinschalten.
- ► Verschließen Sie offene Anschlüsse unmittelbar nach dem Ausbau durch die original Schutzdeckel

7.2 Checkliste für Inspektion und Wartung

Wartungsintervalle und Standzeiten

Wartungsintervalle und Standzeiten sind prozessabhängig. Chemische und thermische Belastungen oder Verschmutzungen verkürzen die empfohlenen Richtwerte.

- Ermitteln Sie die spezifischen Standzeiten innerhalb des ersten Betriebsintervalls.
- Stimmen Sie k\u00fcrzere Wartungsintervalle mit dem Pfeiffer Vacuum Service ab.

Wartung Level 2 und 3

Für die Durchführung von Wartungsarbeiten der Level 2 und 3 empfehlen wir den Pfeiffer Vacuum Service (PV). Bei Überschreiten der genannten Intervalle oder bei unsachgemäß ausgeführten Wartungsarbeiten, entfallen jegliche Gewährleistungs- und Haftungsansprüche gegenüber Pfeiffer Vacuum. Dies gilt auch, wenn Sie keine Originalersatzteile verwenden.

Empfehlungen für die Ausführung von Wartungsmaßnahmen

- ► Sie können Wartungsarbeiten Level 1 eigenständig durchführen.
- ▶ Verwenden Sie zur Reinigung ein fusselfreies Tuch und wenig Isopropanol.

- ▶ Beachten Sie die Dauer der Gebrauchsfähigkeit des Betriebsmittels.
- ▶ Wenden Sie sich für Fragen zur Wartung an die zuständige Pfeiffer Vacuum Servicestelle.

Tätigkeit	Inspektion	Wartung Level 1	Wartung Level 2	Wartung Level 3	Benötigtes Material
Beschrieben in Dokument	ВА	BA/WA	WA	SA	
Intervall	bei Bedarf	≤ 5 Jahre	≤ 5 Jahre	≤ 5 Jahre	
Inspektion					
Optisch-, akustische Prüfung	-				
Auslesen und Analyse der Pumpendaten ³⁾	-				
Optionales Softwareupdate ⁴⁾	•				
Erstellen einer Handlungs- empfehlung ⁵⁾	-				
Wartung Level 1 - Betriebsm	ittelspeicherv	vechsel	1	1	
Vakuumpumpe äußerlich reinigen, Unterteil reinigen,		•			Betriebsmittel- speicher
Betriebsmittelspeicher wechseln,					
Funktionstest					
Wartung Level 2 - Austausch	relevanter V	erschleißtei	le		
Vakuumpumpe äußerlich reinigen, Unterteil reinigen,			•		Ersatzteilpa- ket 1 – Lager
Vakuumpumpe teilweise demontieren,					
Betriebsmittelspeicher wechseln,					
Lagerfassung wechseln,					
Funktionstest					
Wartung Level 3 – Revision					
Vakuumpumpe demontieren und reinigen,				-	Ersatzteilpa- ket 1 – Lager
alle Dichtungen und Verschleißteile austauschen,					Dichtungssatz
Funktionstest					

Tab. 11: Wartungsintervalle

7.3 Betriebsmittelspeicher austauschen

WARNUNG

Vergiftungsgefahr durch Kontakt mit gesundheitsschädlichen Stoffen

Der Betriebsmittelspeicher und Teile der Turbopumpe enthalten möglicherweise giftige Substanzen aus den gepumpten Medien.

- ▶ Dekontaminieren Sie betreffende Teile vor der Ausführung von Wartungsarbeiten.
- ► Verhindern Sie Gesundheitsgefährdungen oder Umweltbelastungen durch entsprechende Sicherheitsvorkehrungen.
- ▶ Beachten Sie das Sicherheitsdatenblatt des Betriebsmittels.
- ▶ Entsorgen Sie den Betriebsmittelspeicher nach den geltenden Vorschriften.

³⁾ Bei Wartung durch den Pfeiffer Vacuum Service.

⁴⁾ Bei Wartung durch den Pfeiffer Vacuum Service.

⁵⁾ Bei Wartung durch den Pfeiffer Vacuum Service.

HINWEIS

Beschädigung von Dichtflächen durch ungeeignete Hilfsmittel

Der Einsatz ungeeigneter Hilfsmittel zur Entnahme oder zum Einsetzen von Dichtringen führt zu Beschädigung der Dichtflächen und somit zu Undichtigkeiten an der Vakuumpumpe.

- Verwenden Sie niemals scharfkantige, metallische Hilfsmittel (z. B. Pinzette).
- ► Entnehmen Sie Dichtringe nur mit einem O-Ring Picker.

Austausch des Betriebsmittelspeichers

Der Betriebsmittelspeicher der Turbopumpe ist je nach Bauart mit oder ohne Kapillarstäbe ausgeführt.

- Achten Sie bei der Ersatzteilbestellung auf die korrekte Zuordnung von Pumpenartikelnummer und Betriebsmittelspeicher.
- Sie finden diese Informationen auf dem Pumpentypenschild.

Scannen Sie den QR-Code oder klicken Sie hier und sehen Sie den Service Level 1, Betriebsmittelspeicherwechsel.

Sie finden das Sicherheitsdatenblatt unter Pfeiffer Vacuum Download Center.

Voraussetzungen

- Turbopumpe ausgeschaltet
- Vakuumsystem auf Atmosphärendruck geflutet
- elektrische Versorgung unterbrochen
- Alle Kabel gelöst
- Alle Öffnungen mit den original Schutzdeckeln und ggf. Stopfen verschlossen

Betriebsmittelspeicher demontieren 7.3.1

Benötigtes Verbrauchsmaterial

- Sauberes, fusselfreies Tuch
- Laborhandschuhe

Benötigte Werkzeuge

- Innensechskantschlüssel, SW 3
- Pinzette
- O-Ring Picker

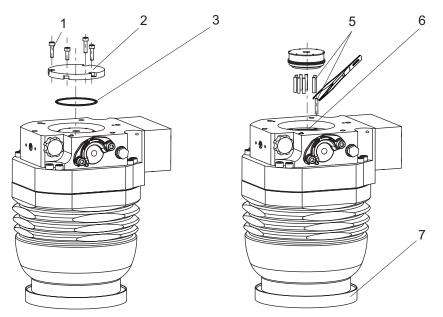


Abb. 16: Betriebsmittelspeicher demontieren

- Innensechskantschraube
- Verschlussdeckel
- 3 O-Ring
- Betriebsmittelspeicher
- Kapillarstäbe (9×)
- 6 Spritzspitze
- Schutzdeckel

Betriebsmittelspeicher demontieren

- 1. Tragen Sie Laborhandschuhe um Hautkontakt zu vermeiden.
- 2. Stellen Sie die Turbopumpe auf den verschlossenen Hochvakuumflansch.
- 3. Schrauben Sie alle Innensechskantschrauben aus dem Verschlussdeckel am Pumpenunterteil heraus.
- 4. Nehmen Sie den Verschlussdeckel ab.
- 5. Nehmen Sie den O-Ring mithilfe eines O-Ring Pickers aus der Nut.
 - Vermeiden Sie Beschädigungen durch Kratzer.
- 6. Nehmen Sie den Betriebsmittelspeicher mit der Pinzette aus der Lagerfassung.
- 7. Ziehen Sie die alten Kapillarstäbe mit der Pinzette aus dem Pumpenunterteil.
- 8. Reinigen Sie den Verschlussdeckel mit einem sauberen, fusselfreien Tuch.
 - Verwenden Sie keine Reinigungsmittel.

Betriebsmittelspeicher montieren 7.3.2

Benötigte Verbrauchsmaterial

- Laborhandschuhe
- Betriebsmittelspeicher

Benötigte Werkzeuge

- Innensechskantschlüssel, SW 3
- Pinzette
- kalibrierter Drehmomentschlüssel (Anziehfaktor ≤ 1,6)

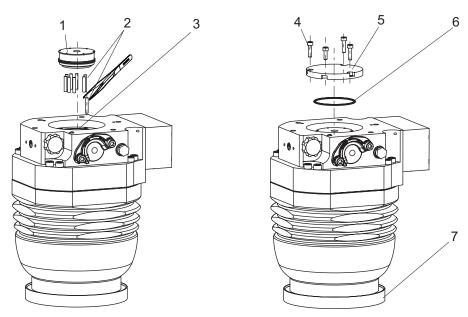


Abb. 17: Betriebsmittelspeicher montieren

- Betriebsmittelspeicher
- Kapillarstäbe (9×) Spritzspitze
- Innensechskantschraube
- Verschlussdeckel
- O-Ring Schutzdeckel

Betriebsmittelspeicher montieren

- 1. Tragen Sie Laborhandschuhe um Hautkontakt zu vermeiden.
- 2. Setzen Sie alle neuen Kapillarstäbe mit der Pinzette ein.
- 3. Setzen Sie den Betriebsmittelspeicher mit der Filzseite in Richtung der Spritzspitze in die Lagerfassung.
 - Üben Sie keinen Druck auf den Betriebsmittelspeicher aus.
- 4. Legen Sie den O-Ring in die Nut im Pumpenunterteil ein.
- 5. Montieren Sie den Verschlussdeckel.
- 6. Schrauben Sie alle 3 Innensechskantschrauben gleichmäßig fest.
 - Anziehdrehmoment: 2,5 Nm.

7.4 Antriebselektronik austauschen

HINWEIS

Schäden an Vakuumpumpe und Antriebselektronik durch unsachgemäßes Trennen von Komponenten

Auch nach Abschalten der Netzversorgung liefert die nachlaufende Vakuumpumpe elektrische Energie. Bei vorzeitiger Trennung von Vakuumpumpe und Antriebselektronik besteht die Gefahr eines Massenschlusses und dadurch die Zerstörung von elektronischen Bauteilen.

- Trennen Sie Vakuumpumpe und Antriebselektronik niemals bei bestehender Netzverbindung oder laufendem Rotor voneinander.
- Beobachten Sie die Drehzahl über die in der Antriebselektronik verfügbaren Parameter (z. B. [P:398]).
- Warten Sie den Stillstand der Vakuumpumpe ab (Drehzahl f = 0).

HINWEIS

Sachschaden durch elektrostatische Entladungen

Die Nichtbeachtung der elektrostatischen Gefährdung von elektronischen Komponenten führt zu deren Beschädigung oder Zerstörung.

- ▶ Stellen Sie ESD-Schutzmaßnahmen am Arbeitsplatz sicher.
- Beachten Sie DIN EN 61340 "Schutz von elektronischen Bauelementen gegen elektrostatische Phänomene".

Sicherung von kundenseitigen Einstellungen

Im Austauschgerät sind immer die werkseitigen Betriebsparameter voreingestellt. Alle kundenseitig vorgenommenen Einstellungen der original Antriebselektronik gehen nach einem Austausch verloren. Zum Erhalt Ihrer persönlichen Einstellungen haben Sie folgende Möglichkeiten:

- 1. Sichern Sie alle Ihre Einstellungen als Parametersatz in einem HPU.
- 2. Laden Sie einen gesicherten Parametersatz mittels HPU in die neue Antriebselektronik.
- 3. Programmieren Sie individuelle Einstellungen in der neuen Antriebselektronik manuell.
- 4. Beachten Sie die Betriebsanleitungen der Antriebselektronik und des HPU.

Eine Reparatur der Antriebselektronik der Turbopumpe ist nicht möglich. Im Falle eines Defekts können Sie die komplette Antriebselektronik durch ein Ersatzteil austauschen.

Voraussetzungen

- Turbopumpe ausgeschaltet
- Turbopumpe abgekühlt.
- Vakuumsystem auf Atmosphärendruck geflutet
- Elektrische Versorgung unterbrochen
- Alle Kabel von der Antriebselektronik gelöst
- Alle Öffnungen mit original Schutzdeckeln und ggf. Schraubstopfen verschlossen.

7.4.1 Antriebselektronik demontieren

Benötigte Werkzeuge

- Torx Schraubendreher TX 10
- Kalibrierter Drehmomentschlüssel (Anziehfaktor ≤ 1,6)

Abb. 18: Demontage der Antriebselektronik TC 110|TC 120

- 1 Torxschraube
- 2 Antriebselektronik
- 3 Adapterplatte
- 4 Original-Schutzdeckel
- 5 Blindflansch

Vorgehen

- 1. Stellen Sie die Turbopumpe ggf. aufrecht.
- 2. Schrauben Sie alle 4 Torxschrauben aus der Antriebselektronik heraus.
- 3. Ziehen Sie die alte Antriebselektronik gerade von der Turbopumpe ab.
- 4. Setzen Sie eine neue Antriebselektronik gerade auf den Anschluss der Adpaterplatte der Turbopumpe auf.
- 5. Schrauben Sie die Antriebselektronik mit allen 4 Torxschrauben an der Turbopumpe an.
 - Anziehdrehmoment: 0,8 Nm

7.4.2 Antriebselektronik installieren

Benötigte Werkzeuge

- Torx Schraubendreher TX 10
- Kalibrierter Drehmomentschlüssel (Anziehfaktor ≤ 1,6)

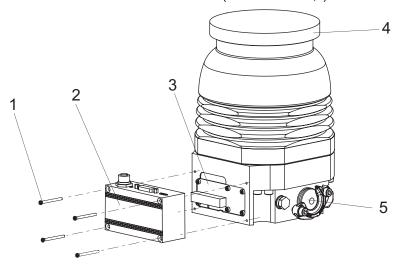


Abb. 19: Montage der Antriebselektronik TC 110|TC 120

- 1 Torxschraube
- 2 Antriebselektronik
- 3 Adapterplatte
- 4 Original-Schutzdeckel
- 5 Blindflansch

Vorgehen

- 1. Stellen Sie die Turbopumpe ggf. aufrecht.
- Setzen Sie die neue Antriebselektronik gerade auf den Anschluss der Adpaterplatte der Turbopumpe auf.
- 3. Schrauben Sie die Antriebselektronik mit allen 4 Torxschrauben an der Turbopumpe an.
 - Anziehdrehmoment: 0,8 Nm

7.4.3 Drehzahlvorgabe bestätigen

Die charakteristische Nenndrehzahl einer Turbopumpe ist werkseitig in der Antriebselektronik voreingestellt. Nach Austausch der Antriebselektronik, bzw. Wechsel auf einen anderen Pumpentyp, erlischt die Sollwertvorgabe der Nenndrehzahl. Die manuelle Bestätigung der Nenndrehzahl ist Bestandteil eines redundanten Sicherheitssystems als Maßnahme zur Vermeidung von Überdrehzahl.

Die redundante Bestätigung der Nenndrehzahl einer Turbopumpe ist durch Einstellen des Parameters **[P:777] NomSpdConf** in der Antriebselektronik möglich.

HiPace	Nenndrehzahl
10 30 60 80	1500 Hz
300	1000 Hz
350 450	1100 Hz
400 700 800	820 Hz

Tab. 12: Charakteristische Nenndrehzahlen der Turbopumpen

Benötigte Hilfsmittel

- angeschlossenes Pfeiffer Vacuum Steuergerät
- Kenntnis der Konfiguration und Einstellung von Betriebsparametern der Antriebselektronik

Einstellen der Bestätigung der Nenndrehzahl

- 1. Beachten Sie die Betriebsanleitung des Steuergeräts.
- 2. Beachten Sie die Betriebsanleitung der Antriebselektronik.
- 3. Stellen Sie den Parameter [P:794] auf "1" und aktivieren Sie den erweiterten Parametersatz.

- 4. Öffnen und editieren Sie den Parameter [P:777].
- 5. Stellen Sie den Parameter [P:777] auf den erforderlichen Wert der Nenndrehzahl in Hertz ein.

Alternative zum Einstellen der Bestätigung der Nenndrehzahl

Austauschgeräten liegt ein Pfeiffer Vacuum SpeedConfigurator für die einmalige Soforteinstellung des Parameters **[P:777]** bei.

Außerbetriebnahme 8

8.1 Stillsetzen für längere Zeit

WARNUNG

Gesundheitsgefahr durch Vergiftung an toxisch kontaminierten Bauteilen oder Geräten

Toxische Prozessmedien führen zur Kontamination der Geräte oder Teilen davon. Bei Wartungsarbeiten besteht Gesundheitsgefahr durch Kontakt mit diesen giftigen Substanzen. Die unzulässige Beseitigung toxischer Substanzen führt zu Umweltschäden.

- Treffen Sie geeignete Sicherheitsvorkehrungen und verhindern Sie Gesundheitsgefährdungen und Umweltbelastungen durch toxische Prozessmedien.
- Dekontaminieren Sie die betreffenden Teile vor der Ausführung von Wartungsarbeiten.
- ► Tragen Sie Schutzausrüstung.

Vorgehensweise für ein längeres Stillsetzen der Turbopumpe (> 1 Jahr)

- 1. Bauen Sie die Turbopumpe ggf. aus dem Vakuumsystem aus.
- 2. Tauschen Sie ggf. den Betriebsmittelspeicher der Turbopumpe aus.
- 3. Verschließen Sie den Hochvakuumflansch der Turbopumpe.
- 4. Evakuieren Sie die Turbopumpe über den Vorvakuumanschluss.
- 5. Belüften Sie die Turbopumpe über den Flutanschluss mit trockener, ölfreier Luft oder Inertgas.
- 6. Verschließen Sie Flanschöffnungen mit den original Schutzdeckeln.
- 7. Lagern Sie die Turbopumpe aufrecht mit dem Hochvakuumflansch nach oben.
- 8. Lagern Sie die Turbopumpe nur in Innenräumen im angegebenen Temperaturbereich.
- 9. In Räumen mit feuchter oder aggressiver Atmosphäre: Schweißen Sie die Turbopumpe zusammen mit einem Trockenmittel in einen Kunststoffbeutel luftdicht ein.

8.2 Wiederinbetriebnahme

HINWEIS

Schäden an der Turbopumpe durch Überalterung des Betriebsmittels nach Wiederinbetriebnahme

Die Lagerfähigkeit des Betriebsmittels der Turbopumpe ist begrenzt. Überalterung des Betriebsmittels kann zum Ausfall der Kugellager führen und Schäden an der Turbopumpe verursachen.

- Beachten Sie die Gebrauchsfähigkeit des Betriebsmittels:
 - ohne Betrieb maximal 2 Jahre,
 - nach Betriebs- und Stillstandzeiten in Summe maximal 5 Jahre.
- ▶ Beachten Sie die Wartungshinweise und verständigen Sie den Pfeiffer Vacuum Service.

Vorgehensweise für die Wiederinbetriebnahme der Turbopumpe

- 1. Überprüfen Sie die Turbopumpe auf Verschmutzungen und Feuchtigkeit.
- 2. Reinigen Sie die Turbopumpe außen mit fusselfreiem Tuch und wenig Isopropanol.
- 3. Lassen Sie die Turbopumpe ggf. durch den Pfeiffer Vacuum Service komplett reinigen.
- 4. Beachten Sie die Gesamtlaufzeit der Turbopumpe und lassen ggf. einen Lagerwechsel durch den Pfeiffer Vacuum Service durchführen.
- 5. Wechseln Sie den Betriebsmittelspeicher der Turbopumpe.
- Installieren Sie die Turbopumpe gemäß dieser Anleitung (siehe Kapitel "Installation", Seite 21).
- 7. Nehmen Sie die Turbopumpe gemäß dieser Anleitung wieder in Betrieb (siehe Kapitel "Inbetriebnahme", Seite 33).

9 Recycling und Entsorgung

WARNUNG

Gesundheitsgefahr durch Vergiftung an toxisch kontaminierten Bauteilen oder Geräten

Toxische Prozessmedien führen zur Kontamination der Geräte oder Teilen davon. Bei Wartungsarbeiten besteht Gesundheitsgefahr durch Kontakt mit diesen giftigen Substanzen. Die unzulässige Beseitigung toxischer Substanzen führt zu Umweltschäden.

- ► Treffen Sie geeignete Sicherheitsvorkehrungen und verhindern Sie Gesundheitsgefährdungen und Umweltbelastungen durch toxische Prozessmedien.
- Dekontaminieren Sie die betreffenden Teile vor der Ausführung von Wartungsarbeiten.
- ▶ Tragen Sie Schutzausrüstung.

Umweltschutz

Die Entsorgung des Produkts und seiner Komponenten **muss** alle geltenden Vorschriften zum Schutz von Mensch, Umwelt und Natur einhalten.

- Helfen Sie Verschwendung von Naturressourcen zu reduzieren.
- Verhindern Sie Verschmutzungen.

9.1 Allgemeine Entsorgungshinweise

Pfeiffer Vacuum Produkte enthalten Werkstoffe, die Sie recyclen müssen.

- Entsorgen Sie unsere Produkte nach Beschaffenheit als
 - Eisen
 - Aluminium
 - Kupfer
 - Kunststoff
 - Elektronikbestandteile
 - Öl und Fett, lösemittelfrei
- ▶ Beachten Sie besondere Vorsichtsmaßnahmen bei der Entsorgung von
 - fluorierten Elastomeren (FKM)
 - medienberührenden, potentiell kontaminierten Komponenten

9.2 Turbopumpe entsorgen

Pfeiffer Vacuum Turbopumpen enthalten Werkstoffe, die Sie recyclen müssen.

- 1. Entnehmen Sie den Betriebsmittelspeicher komplett.
- 2. Entfernen Sie die Antriebselektronik.
- 3. Dekontaminieren Sie Bauteile mit Kontakt zu Prozessgasen
- 4. Trennen Sie die Komponenten nach Wertstoffen.
- 5. Führen Sie nicht kontaminierte Bauteile der Wiederverwertung zu.
- 6. Entsorgen Sie das Produkt oder Bauteile sicher gemäß den örtlich geltenden Bestimmungen.

10 Störungen

WARNUNG

Lebensgefahr durch Vergiftung bei Austritt von toxischen Prozessmedien an beschädigten Anschlüssen

Plötzliches Verdrehen der Turbopumpe im Störungsfall führt zu Beschleunigungen von Anbauten. Es besteht das Risiko von Beschädigungen und Leckagen an kundenseitigen Anschlüssen (z.B. Vorvakuumleitung). Der Austritt von Prozessmedien ist die Folge. Bei Prozessen mit toxischen Medien besteht Verletzungs- und Lebensgefahr durch Vergiftung.

- Halten Sie an der Turbopumpe anzuschließende Massen möglichst gering.
- Verwenden Sie ggf. flexible Leitungen für den Anschluss an der Turbopumpe.

WARNUNG

Lebensgefahr durch Abreißen der Turbopumpe im Störungsfall

Plötzliches Blockieren des Rotors erzeugt gemäß ISO 27892 hohe zerstörende Drehmomente. Diese führen bei **nicht** ordnungsgemäßer Befestigung zum Abreißen der Turbopumpe. Die dabei freigesetzte Energie kann die gesamte Turbopumpe oder Bruchstücke aus deren Inneren durch den Raum schleudern. Potentiell gefährliche Gase können entweichen. Es besteht die Gefahr von schwersten Verletzungen, evtl. mit Todesfolge und großen Sachschäden.

- ▶ Befolgen Sie die Installationsanweisungen für diese Turbopumpe.
- ▶ Beachten Sie die Anforderungen an Stabilität und Auslegung des Gegenflansches.
- Verwenden Sie nur original Zubehör oder von Pfeiffer Vacuum zugelassenes Befestigungsmaterial für die Installation.

WARNUNG

Verletzungsgefahr durch Abreißen der Turbopumpe mit Dämpfungskörper im Störungsfall

Plötzliches Blockieren des Rotors erzeugt gemäß ISO 27892 hohe zerstörende Drehmomente. Diese führen bei Verwendung eines Dämpfungskörpers höchstwahrscheinlich zum Abreißen der Turbopumpe. Die dabei freigesetzte Energie kann die gesamte Turbopumpe oder Bruchstücke aus deren Inneren durch den Raum schleudern. Potentiell gefährliche Gase können entweichen. Es besteht die Gefahr von schwersten Verletzungen, evtl. mit Todesfolge und großen Sachschäden.

- ► Ergreifen Sie bauseitig geeignete Sicherungsmaßnahmen zur Kompensation der auftretenden Drehmomente.
- Halten Sie vor der Installation eines Dämpfungskörpers unbedingt Rücksprache mit Pfeiffer Vacuum.

Bei auftretenden Störungen finden Sie hier Hinweise auf mögliche Ursachen und deren Behebung. Eine detaillierte Fehlerbeschreibung befindet sich in der Betriebsanleitung der zugehörigen Antriebselektronik.

Problem	Mögliche Ursachen	Behebung
Turbopumpe läuft nicht an; keine der eingebauten LEDs an der Antriebselektronik leuchtet	Stromversorgung unter- brochen	 Überprüfen Sie die Steckkontakte am Netzteil. Überprüfen Sie die Zuleitungen der Stromversorgung. Überprüfen Sie die Ausgangsspannung am Anschluss "DC out" des Netzteils. Je nach Ausführung des Netzteils liegen 24 V DC oder 48 V DC an.
	Betriebsspannung in- korrekt	 Beachten Sie das Typenschild der Antriebselektronik. Legen Sie die korrekte Betriebsspannung an.
	Keine Betriebsspan- nung angelegt	Legen Sie die korrekte Betriebsspannung an.Schalten Sie das Netzteil ein.
	Antriebselektronik defekt	Tauschen Sie die Antriebselektronik aus.Verständigen Sie den Pfeiffer Vacuum Service.

Turbopumpe läuft nicht an; grüne LED an der Antriebs- elektronik blinkt	Bei Betrieb ohne Bedieneinheit: Pin 2-7 und 5-7 am Anschluss "X3" sind nicht verbunden	 Verbinden Sie die Anschlüsse gemäß Anschlussplan der Antriebselektronik. Überprüfen Sie die Brücken am Verbindungskabel.
	Bei Betrieb über RS-485: Brücke zwi- schen Pin 5 und 7 ver- hindert Stellbefehle	 Entfernen Sie die Brücke am Anschluss "X3". Überprüfen Sie das Verbindungskabel.
	Bei Betrieb über RS-485: Parameter in der Antriebselektronik sind nicht gesetzt	 Setzen Sie die Parameter [P: 010] und [P: 023] über die Schnittstelle RS-485 auf 1 = "ON".
	Spannungsabfall im Ka- bel zu hoch	Überprüfen Sie das Verbindungskabel.Verwenden Sie ein geeignetes Verbindungskabel.
Turbopumpe erreicht nicht die Nenndrehzahl innerhalb der eingestellten Hochlauf-	Vorvakuumdruck zu hoch	 Stellen Sie die Eignung der Vorpumpe sicher (gem. Technische Daten). Überprüfen Sie die Funktion der Vorpumpe.
zeit	Leckage an der Turbo- pumpe	 Führen Sie eine Lecksuche durch. Überprüfen Sie Dichtungen und Flanschverbindungen. Beseitigen Sie Undichtigkeiten.
	Gasdurchsatz zu hoch	Reduzieren Sie die Prozessgasbelastung.
	Rotor schwergängig, Lager defekt	 Überprüfen Sie die Turbopumpe auf Geräuschentwicklung Verständigen Sie den Pfeiffer Vacuum Service.
	Sollwert Hochlaufzeit zu niedrig eingestellt	 Verständigen Sie den Pfeiffer Vacuum Service. Verlängern Sie den Sollwert der Hochlaufzeit [P:700] über ein Steuergerät.
	Thermische Belastung durch: mangelnde Belüftung Wasserdurchfluss zu niedrig Vorvakuumdruck zu hoch zu hohe Umgebungs- temperatur	 Reduzieren Sie die thermische Belastung. Gewährleisten Sie ausreichende Luftzufuhr. Stellen Sie den Kühlwasserzufluss ein. Senken Sie den Vorvakuumdruck. Passen Sie die Umgebungsbedingungen an.
Turbopumpe erreicht nicht den Enddruck	Turbopumpe ist ver- schmutzt	 Heizen Sie die Turbopumpe ggf. aus. Lassen Sie eine Reinigung durchführen. Verständigen Sie den Pfeiffer Vacuum Service.
	Vakuumkammer, Leitungen oder Turbopumpe sind undicht	 Führen Sie eine Lecksuche ausgehend von der Vakuumkammer durch. Überprüfen Sie Dichtungen und Flanschverbindungen. Beseitigen Sie Undichtigkeiten im Vakuumsystem.
Ungewöhnliche Betriebsgeräusche	Rotorlagerung ist be- schädigt	Verständigen Sie den Pfeiffer Vacuum Service.
	Rotor ist beschädigt	Verständigen Sie den Pfeiffer Vacuum Service.
	Splitterschutz oder Schutzgitter lose	 Überprüfen und korrigieren Sie den Sitz des Splitter- schutzes oder Schutzgitters im Hochvakuumflansch. Beachten Sie die Installationshinweise.
Rote LED an der Antriebs- elektronik leuchtet	Sammelfehler	 Setzen Sie den Fehler zurück durch Aus- und Einschalten der Stromversorgung. Setzen Sie den Fehler zurück durch V+ an Pin 6 am Anschluss "X3". Setzen Sie den Parameter [P: 009] über die Schnittstelle RS-485 auf 1 = Störungsquittierung. Setzen Sie den Parameter [P: 010] über die Schnittstelle RS-485 auf 0 = Aus und anschließend auf 1 = Ein und Störungsquittierung. Führen Sie eine differenzierte Fehleranalyse mit einem Steuergerät durch. Verständigen Sie den Pfeiffer Vacuum Service.

Tab. 13: Störungsbehebung bei Turbopumpen

11 Servicelösungen von Pfeiffer Vacuum

Wir bieten erstklassigen Service

Hohe Lebensdauer von Vakuumkomponenten bei gleichzeitig geringen Ausfallzeiten sind klare Erwartungen, die Sie an uns stellen. Wir begegnen Ihren Anforderungen mit leistungsfähigen Produkten und hervorragendem Service.

Wir sind stets darauf bedacht, unsere Kernkompetenz, den Service an Vakuumkomponenten, zu perfektionieren. Nach dem Kauf eines Produkts von Pfeiffer Vacuum ist unser Service noch lange nicht zu Ende. Oft fängt Service dann erst richtig an. Natürlich in bewährter Pfeiffer Vacuum Qualität.

Weltweit stehen Ihnen unsere professionellen Verkaufs- und Servicemitarbeiter tatkräftig zur Seite. Pfeiffer Vacuum bietet ein komplettes Leistungsspektrum vom Originalersatzteil bis zum Servicevertrag.

Nehmen Sie den Pfeiffer Vacuum Service in Anspruch

Ob präventiver Vor-Ort-Service durch unseren Field-Service, schnellen Ersatz durch neuwertige Austauschprodukte oder Reparatur in einem <u>Service Center</u> in Ihrer Nähe – Sie haben verschiedene Möglichkeiten, Ihre Geräte-Verfügbarkeit aufrecht zu erhalten. Ausführliche Informationen und Adressen finden Sie auf unserer Homepage im Bereich Pfeiffer Vacuum Service.

Beratung über die für Sie optimale Lösung bekommen Sie von Ihrem <u>Pfeiffer Vacuum Ansprechpartner.</u>

Für eine schnelle und reibungslose Abwicklung des Serviceprozesses empfehlen wir Ihnen folgende Schritte:



- 1. Laden Sie die aktuellen Formularvorlagen herunter.
 - Erklärungen über die Service-Anforderungen
 - Service-Anforderungen
 - Erklärung zur Kontaminierung
- a) Demontieren Sie sämtliches Zubehör und bewahren es auf (alle externen Teile, wie Ventile, Schutzgitter, usw.).
- b) Lassen Sie ggf. das Betriebsmittel/Schmiermittel ab.
- c) Lassen Sie ggf. das Kühlmittel ab.
- Füllen Sie die Service-Anforderung und die Erklärung zur Kontaminierung aus.

Senden Sie die Formulare per E-Mail, Fax oder Post an Ihr lokales <u>Service Center</u>.

4. Sie erhalten eine Rückmeldung von Pfeiffer Vacuum.


Einsenden kontaminierter Produkte

Mikrobiologisch, explosiv oder radiologisch kontaminierte Produkte werden grundsätzlich nicht angenommen. Bei kontaminierten Produkten oder bei Fehlen der Erklärung zur Kontaminierung wird sich Pfeiffer Vacuum vor Beginn der Servicearbeiten mit Ihnen in Verbindung setzen. Je nach Produkt und Verschmutzungsgrad fallen **zusätzliche Dekontaminierungskosten** an.



- 5. Bereiten Sie das Produkt für den Transport gemäß den Vorgaben der Erklärung zur Kontaminierung vor.
- Neutralisieren Sie das Produkt mit Stickstoff oder trockener Luft. Verschließen Sie alle Öffnungen luftdicht mit Blindflanschen.

- Schweißen Sie das Produkt in geeignete Schutzfolie ein. Verpacken Sie das Produkt nur in geeigneten, stabilen Transportbehältnissen.
- e) Halten Sie die gültigen Transportbedingungen ein.
- 6. Bringen Sie die Erklärung zur Kontaminierung außen an der Verpackung an.

7. Senden Sie nun Ihr Produkt an Ihr lokales Service Center.

8. Sie erhalten eine Rückmeldung/ein Angebot von Pfeiffer Vacuum.

Für alle Serviceaufträge gelten unsere Verkaufs- und Lieferbedingungen sowie die Reparatur- und Wartungsbedingungen für Vakuumgeräte und -komponenten.

12 Ersatzteile HiPace 350

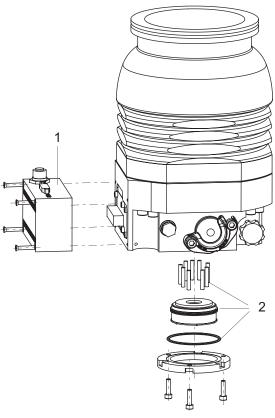


Abb. 20: Ersatzteile HiPace 350

Position	Bezeichnung	Bestellnummer	Bemerkung	Stück
1	Antriebselektronik TC 110 TC 120	siehe Typenschild	abhängig vom Anschlusspanel	1
2	Betriebsmittelspeicher	siehe Typenschild	inkl. Poroplast Stäbe und O- Ring	1

Tab. 14: Verfügbare Ersatzteile

13 Zubehör

Beachten Sie das <u>Zubehörportfolio für hybridgelagerte Turbopumpen</u> auf unserer Homepage.

13.1 Zubehörinformationen

Befestigungsmaterial

Typenspezifisch zusammengestellte Pakete mit Zentrierring und Dichtung gewährleisten die sichere Befestigung der Vakuumpumpe. Optional mit Splitterschutz oder Schutzgitter.

Netzteile und Steuergeräte

Netzteile zur optimalen Spannungsversorgung von Pfeiffer Vacuum Produkten zeichnen sich durch minimale Baugröße und angepasste Leistungsversorgung bei maximaler Zuverlässigkeit aus. Steuergeräte dienen der Kontrolle und Einstellung von Betriebsparametern.

Kabel und Adapter

Netzkabel, Schnittstellen-, Verbindungs- und Verlängerungskabel bieten einen sicheren und geigneten Anschluss. Unterschiedliche Längen auf Anfrage

Zubehör zum Fluten

Ein Pfeiffer Vacuum Flutventil bietet maximale Betriebs- und Prozesssicherheit. Automatische Ansteuerung durch die integrierte Antriebselektronik der Turbopumpe.

Sperrgasversorgung

Sperrgas dient dem Schutz der Vakuumpumpe bei staubbehafteten, korrosiven Prozessen oder bei zu hohem Gasdurchsatz. Sperrgas verhindert den Zutritt von schädigenden Stoffen in den Motor- und Lagerbereich. Die Versorgung erfolgt wahlweise über ein Sperrgasventil oder eine Sperrgasdrossel ohne Steuerung.

Luftkühlung

Bei Prozessen mit niedrigen Gasdurchsätzen und gutem Vorvakuumdruck bietet die Verwendung einer Luftkühlung Unabhängigkeit von einer Wasserversorgung. Automatische Ansteuerung durch die integrierte Antriebselektronik der Turbopumpe.

Heizung

Heizmanschetten unterstützen bei der Prozessreinigung oder dem schnelleren Erreichen des Enddrucks. Automatische Ansteuerung durch die integrierte Antriebselektronik der Turbopumpe.

Ansteuerung Vorpumpe

Die Antriebselektronik der Turbopumpe ermöglicht die sinnvolle Steuerung von Vorpumpen. Abhängig von der verwendeten Vorpumpe sind verschiedene Betriebsmodi möglich.

Integrierte Druckmessung

Auswertung und Ansteuerung durch die integrierte Antriebselektronik unabhängig von einer zusätzlichen Stromversorgung.

13.2 Zubehör bestellen

Benennung	Bestellnummer
Befestigungssatz für DN 100 ISO-K auf ISO-F mit Überwurfflansch, Zentrierring beschichtet, 6-kt Schrauben	PM 016 940 -T
Befestigungssatz für DN 100 ISO-K auf ISO-F mit Überwurfflansch, Zentrierring beschichtet, Stiftschrauben	PM 016 945 -T
Befestigungssatz für HiPace 300, DN 100 ISO-K, inklusive Zentrierring beschichtet und Klammerschrauben	PM 016 365 -T
Befestigungssatz für DN 100 ISO-F, inklusive Zentrierring beschichtet, Stiftschrauben	PM 016 455 -T
Befestigungssatz für DN 100 ISO-F, inklusive Zentrierring beschichtet, Sechskantschrauben	PM 016 450 -T

Benennung	Bestellnummer
Sechskantschraubensatz für Flansche mit Durchgangsbohrung, DN 100 CF-F	PM 016 690 -T
Stiftschraubensatz für Flansche mit Durchgangsbohrung, DN 100 CF-F	PM 016 734 -T
Stiftschraubensatz für Flansche mit Gewindebohrung, DN 100 CF-F	PM 016 866 -T
Dämpfungskörper für HiPace 300/400, DN 100 CF-F	PM 006 488 -X
Dämpfungskörper für HiPace 300/400, DN 100 ISO-K/F	PM 006 459 AX
TPS 180, Netzteil für Wand/Normschienenmontage	PM 061 341 -T
TPS 181, Netzteil 19" Teileinschub 3HE	PM 061 345 -T
Netzkabel 230 V AC, CEE 7/7 auf C13, 3 m	P 4564 309 ZA
Netzkabel 115 V AC, NEMA 5-15 auf C13, 3 m	P 4564 309 ZE
Netzkabel 208 V AC, NEMA 6-15 auf C13, 3 m	P 4564 309 ZF
Verbindungskabel von Netzteil 24V/48V zu Antriebselektronik. Mit Schnittstelle RS-485	PM 061 350 -T
Verbindungskabel mit Schnittstelle RS-485 und 2 Zubehörports von TC 110/120 zu Netzteil	PM 061 351 -T
OmniControl 001 Mobile, Steuergeräte	PE D20 000 0
OmniControl 001, Rackgerät ohne integriertes Netzteil	PE D40 000 0
OmniControl 200, Rackgerät mit integriertem Netzteil	PE D50 000 0
Y-Verteiler M12 für RS-485	P 4723 010
USB RS-485 Konverter	PM 061 207 -T
Schnittstellenkabel, M12 m gerade / M12 m gerade, 3 m	PM 061 283 -T
TIC 010, Adapter für zwei Sensoren	PT R70 000
TCS 11, Adapter für TC 110/120 mit Schnittstelle RS-485	PM 061 636 -U
TCS 12, Adapter für TC 110/120 mit Schnittstelle RS-485, 4 Zubehörports und Verschraubungsset	PM 061 638 -U
TCS 13, Adapter für TC 110/120 mit Schnittstelle RS-485, 2 Zubehörports und Verschraubungsset	PM 061 856 -U
Verbindungskabel mit Schnittstelle RS-485 und 3 Zubehörports von TC 110/120 zu Netzteil	PM 061 512 -T
Verbindungskabel für HiPace mit TC 110/120	PM 061 543 -T
Verbindungskabel mit 2 Zubehörports von TC 110/120 zu Netzteil	PM 061 552 -T
Verlängerungskabel M8 auf M8	PM 061 783 -T
Flutventil geschirmt, 24 V DC, G 1/8" zum Anschluss an TC 110/120	PM Z01 290
Sperrgasventil, geschirmt für HiPace 300 mit TC 110/120	PM Z01 311
Luftkühlung geschirmt für HiPace 350/450 mit TC 110 und TC120	PM Z01 373
Wasserkühlung für HiPace 350 HiPace 400 HiPace 450 HiPace 700 HiPace 800 mit Steckverschraubung 8 mm	PM 026 068 -T
Wasserkühlung für HiPace 60 P / 80 / 350 / 450 und für SplitFlow 50 / 80 mit Steckverschraubung, 8 mm	PM 016 623 -T
Heizmanschette geschirmt, für HiPace 350/450 mit TC 110/120, 230 V AC, Schukostecker	PM 071 700 -T
Heizmanschette geschirmt, für HiPace 350/450 mit TC 110/120, 208 V AC, UL-Stecker	PM 071 701 -T
Heizmanschette geschirmt, für HiPace 350/450 mit TC 110/120, 115 V AC, UL-Stecker	PM 071 702 -T
Relaisbox geschirmt für Vorpumpe, 1-Phasenmotor 7A für TC 110/120 und TCP 350, Stecker M8	PM 071 282 -X
Relaisbox für Vorpumpe, 1-Phasenmotor 20 A für TC 110/120 und TCP 350, Stecker M8	PM 061 373 -T
RPT 010, Digitaler Piezo/Pirani Sensor	PT R71 100
IKT 010, Digitaler Kaltkathoden-Sensor, Niedrigstromausführung	PT R72 100
IKT 011, Digitaler Kaltkathoden-Sensor, Hochstromausführung	PT R73 100

Tab. 15: Zubehör

Benennung	Bestellnummer
OmniControl 400, Rackgerät mit integriertem Netzteil	PE D70 000 0
TPS 400, Netzteil 48 V DC, für Wand/Normschienenmontage	PM 061 343 -T
TPS 401, Netzteil 48 V DC, 19" Teileinschub 3HE	PM 061 347 -T

Tab. 16: Zubehörabweichungen bei TC 120 | 48 V DC

14 Technische Daten und Abmessungen

14.1 Allgemeines

Dieser Abschnitt benennt die Grundlagen für die technischen Daten von Pfeiffer Vacuum Turbopumpen.

Technische Daten

Angegebene Maximalwerte beziehen sich ausschließlich auf den Eintrag als Einzelbelastung.

- Vorgaben nach PNEUROP Komitee PN5
- ISO 27892 2010:"Vakuumtechnik Turbomolekularpumpen Messung des Drehmomentes bei schneller Betriebsstörung"
- ISO 21360-1 2012: "Vakuumtechnik Standardverfahren zur Messung der Leistungsdaten von Vakuumpumpen Teil 1: Grundlegende Beschreibung"
- ISO 21360-4 2018: "Vakuumtechnik Standardverfahren zur Messung der Leistungsdaten von Vakuumpumpen Teil 4: Turbomolekularvakuumpumpen"
- Enddruck mit Testdom nach Ausheizdauer 48 h
- Gasdurchsatz mit Wasserkühlung; Vorpumpe = Drehschieberpumpe (10 m³/h)
- Kühlwasserverbrauch bei maximalem Gasdurchsatz, Kühlwassertemperatur 25 °C
- Integrale Leckrate mit Helium-Konzentration 100 %, Messdauer 10 s
- Schalldruckpegel bei Abstand zur Vakuumpumpe = 1 m

	mbar	bar	Pa	hPa	kPa	Torr mm Hg
mbar	1	1 · 10 ⁻³	100	1	0,1	0,75
bar	1000	1	1 · 10 ⁵	1000	100	750
Pa	0,01	1 · 10-5	1	0,01	1 · 10-3	7,5 · 10 ⁻³
hPa	1	1 · 10 ⁻³	100	1	0,1	0,75
kPa	10	0,01	1000	10	1	7,5
Torr mm Hg	1,33	1,33 · 10 ⁻³	133,32	1,33	0,133	1

 $1 \text{ Pa} = 1 \text{ N/m}^2$

Tab. 17: Umrechnungstabelle: Druckeinheiten

	mbar I/s	Pa m³/s	sccm	Torr I/s	atm cm³/s
mbar l/s	1	0,1	59,2	0,75	0,987
Pa m ³ /s	10	1	592	7,5	9,87
sccm	1,69 · 10 ⁻²	1,69 · 10 ⁻³	1	1,27 · 10 ⁻²	1,67 · 10 ⁻²
Torr I/s	1,33	0,133	78,9	1	1,32
atm cm ³ /s	1,01	0,101	59,8	0,76	1

Tab. 18: Umrechnungstabelle: Einheiten für Gasdurchsatz

14.2 Technische Daten

Auswahlfeld	HiPace® 350 mit TC 110, DN 100 ISO-K	HiPace® 350 mit TC 110, DN 100 CF-F
Anschlussflansch (Eingang)	DN 100 ISO-K	DN 100 CF-F
Anschlussflansch (Ausgang)	DN 16 ISO-KF / G 3/8"	DN 16 ISO-KF / G 3/8"
Drehzahl ± 2 %	66000 rpm	66000 rpm
Drehzahl variabel	60 – 100 %	60 – 100 %
Hochlaufzeit	5,3 min	5,3 min
Enddruck	1 · 10 ⁻⁷ hPa	5 · 10 ⁻¹⁰ hPa

Auswahlfeld	HiPace® 350 mit TC 110, DN 100 ISO-K	HiPace® 350 mit TC 110, DN 100 CF-F	
Saugvermögen für Ar	270 l/s	270 l/s	
Saugvermögen für H ₂	300 l/s	300 l/s	
Saugvermögen für He	350 l/s	350 l/s	
Saugvermögen für N ₂	300 l/s	300 l/s	
Gasdurchsatz bei Enddrehzahl für Ar	0,7 mbar l/s	0,7 mbar l/s	
Gasdurchsatz bei Enddrehzahl für H ₂	11 mbar l/s	11 mbar l/s	
Gasdurchsatz bei Enddrehzahl für He	7 mbar l/s	7 mbar l/s	
Gasdurchsatz bei Enddrehzahl für N ₂	2 mbar l/s	2 mbar l/s	
Kompressionsverhältnis für Ar	> 1 · 10 ¹¹	> 1 · 10 ¹¹	
Kompressionsverhältnis für H ₂	2 · 10 ⁶	2 · 106	
Kompressionsverhältnis für He	> 1 · 108	> 1 · 108	
Kompressionsverhältnis für N ₂	> 1 · 10 ¹¹	> 1 · 10 ¹¹	
Vorvakuum max. für N₂	10 mbar	10 mbar	
Vorvakuum max. für H ₂	6 mbar	6 mbar	
Vorvakuum max. für Ar	10 mbar	10 mbar	
Vorvakuum max. für He	10 mbar	10 mbar	
Antriebselektronik	TC 110	TC 110	
Betriebsspannung: DC	24 V	24 V	
Eingangsspannung: Toleranz	±10 %	±10 %	
Strom max.	7,5 A	7,5 A	
Leistungsaufnahme max.	180 W	180 W	
E/A Schnittstellen	RS-485, Remote	RS-485, Remote	
Leistungskennlinie im Gasmodus 0, Eckpunkt C	90/66000 W/min ⁻¹	90/66000 W/min ⁻¹	
Leistungskennlinie im Gasmodus 0, Eck- punkt D	100/60000 W/min ⁻¹	100/60000 W/min ⁻¹	
Leistungskennlinie im Gasmodus 1, Eck- punkt A	110/66000 W/min ⁻¹	110/66000 W/min ⁻¹	
Leistungskennlinie im Gasmodus 1, Eck- punkt B	130/60000 W/min ⁻¹	130/60000 W/min ⁻¹	
Leistungskennlinie im Gasmodus 2, Eckpunkt E	150/66000 W/min ⁻¹	150/66000 W/min ⁻¹	
Leistungskennlinie im Gasmodus 2, Eck- punkt F	150/60000 W/min ⁻¹	150/60000 W/min ⁻¹	
Einbaulage	Beliebig	Beliebig	
Lagerung	Hybrid	Hybrid	
Kühlart	Konvektion	Konvektion	
Kühlart, optional	Luft, Wasser	Luft, Wasser	
Kühlwasserdurchfluss	100 l/h	100 l/h	
Kühlwassertemperatur	15 – 25 °C	15 – 25 °C	
Relative Luftfeuchte	5 – 85 %	5 – 85 %	
Transport und Lagertemperatur	-20 – 55 °C	-20 – 55 °C	
Flutanschluss	G 1/8"	G 1/8"	
Max. Anschlussdruck (abs.) für Flut-/Sperr- gasventil	1500 hPa	1500 hPa	
Schutzart	IP44, Type 12	IP44, Type 12	
Schalldruckpegel	≤50 dB(A)	≤50 dB(A)	
Integrale Leckrate	1 · 10 ⁻⁷ mbar l/s	1 · 10 ⁻⁷ mbar l/s	
Zulässiges radiales Magnetfeld max.	4,5 mT	4,5 mT	

Auswahlfeld	HiPace® 350 mit TC 110, HiPace® 350 mit DN 100 ISO-K 110, DN 100 CF-F	
Zulässiges axiales Magnetfeld max.	20 mT	20 mT
Gewicht	7,2 kg	10 kg

Tab. 19: Technische Daten für HiPace 350 | TC 110

Auswahlfeld	HiPace® 350 mit TC 120, DN 100 ISO-K	HiPace® 350 mit TC 120, DN 100 CF-F	
Anschlussflansch (Eingang)	DN 100 ISO-K	DN 100 CF-F	
Anschlussflansch (Ausgang)	DN 16 ISO-KF / G 3/8"	DN 16 ISO-KF / G 3/8"	
Drehzahl ± 2 %	66000 rpm	66000 rpm	
Drehzahl variabel	60 – 100 %	60 – 100 %	
Hochlaufzeit	4 min	4 min	
Enddruck	1 · 10 ⁻⁷ hPa	5 · 10 ⁻¹⁰ hPa	
Saugvermögen für Ar	270 l/s	270 l/s	
Saugvermögen für H ₂	300 l/s	300 l/s	
Saugvermögen für He	350 l/s	350 l/s	
Saugvermögen für N ₂	300 l/s	300 l/s	
Gasdurchsatz bei Enddrehzahl für Ar	0,7 mbar l/s	0,7 mbar l/s	
Gasdurchsatz bei Enddrehzahl für H ₂	11 mbar l/s	11 mbar l/s	
Gasdurchsatz bei Enddrehzahl für He	7 mbar l/s	7 mbar l/s	
Gasdurchsatz bei Enddrehzahl für N ₂	2 mbar l/s	2 mbar l/s	
Kompressionsverhältnis für Ar	> 1 · 10 ¹¹	> 1 · 10 ¹¹	
Kompressionsverhältnis für H ₂	2 · 10 ⁶	2 · 106	
Kompressionsverhältnis für He	> 1 · 108	> 1 · 108	
Kompressionsverhältnis für N ₂	> 1 · 10 ¹¹	> 1 · 10 ¹¹	
Vorvakuum max. für N ₂	10 mbar	10 mbar	
Vorvakuum max. für H ₂	6 mbar	6 mbar	
Vorvakuum max. für Ar	10 mbar	10 mbar	
Vorvakuum max. für He	10 mbar	10 mbar	
Antriebselektronik	TC 120	TC 120	
Betriebsspannung: DC	48 V	48 V	
Eingangsspannung: Toleranz	±10 %	±10 %	
Strom max.	3,75 A	3,75 A	
Leistungsaufnahme max.	180 W	180 W	
E/A Schnittstellen	RS-485, Remote	RS-485, Remote	
Leistungskennlinie im Gasmodus 0, Eck- punkt C	90/66000 W/min ⁻¹	90/66000 W/min ⁻¹	
Leistungskennlinie im Gasmodus 0, Eck- punkt D	100/60000 W/min ⁻¹	100/60000 W/min ⁻¹	
Leistungskennlinie im Gasmodus 1, Eck- punkt A	110/66000 W/min ⁻¹	110/66000 W/min ⁻¹	
Leistungskennlinie im Gasmodus 1, Eck- punkt B	130/60000 W/min ⁻¹	130/60000 W/min ⁻¹	
Leistungskennlinie im Gasmodus 2, Eck- punkt E	150/66000 W/min ⁻¹	150/66000 W/min ⁻¹	
Leistungskennlinie im Gasmodus 2, Eck- punkt F	150/60000 W/min ⁻¹	150/60000 W/min ⁻¹	
Einbaulage	Beliebig	Beliebig	
Lagerung	Hybrid	Hybrid	
Kühlart	Konvektion	Konvektion	
Kühlart, optional	Luft, Wasser	Luft, Wasser	

Auswahlfeld	HiPace® 350 mit TC 120, DN 100 ISO-K	HiPace® 350 mit TC 120, DN 100 CF-F	
Kühlwasserdurchfluss	100 l/h	100 l/h	
Kühlwassertemperatur	15 – 25 °C	15 – 25 °C	
Relative Luftfeuchte	5 – 85 %	5 – 85 %	
Transport und Lagertemperatur	-20 – 55 °C	-20 – 55 °C	
Flutanschluss	G 1/8"	G 1/8"	
Max. Anschlussdruck (abs.) für Flut-/Sperr- gasventil	1500 hPa	1500 hPa	
Schutzart	IP44, Type 12	IP44, Type 12	
Schalldruckpegel	≤50 dB(A)	≤50 dB(A)	
Integrale Leckrate	1 · 10 ⁻⁷ mbar l/s	1 · 10 ⁻⁷ mbar l/s	
Zulässiges radiales Magnetfeld max.	4,5 mT	4,5 mT	
Zulässiges axiales Magnetfeld max.	20 mT	20 mT	
Gewicht	7,2 kg	10 kg	

Tab. 20: Technische Daten für HiPace 350 | TC 120

14.3 Kennlinien

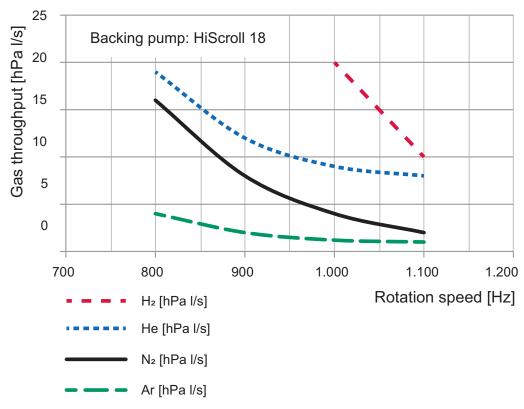


Abb. 21: Kennlinie Gasdurchsatz in Abhängigkeit der Drehzahl

14.4 Medienberührende Werkstoffe

Medienberührende Werkstoffe		
Aluminiumlegierungen		
Edelstahl		
Seltene-Erden-Magnete		
Kohlefaserverstärkte Kunststoffe		
Epoxidharz		
FKM		
Nickel		
Filz		
Betriebsmittel (Esteröl)		
Oxidkeramik, ggf.		

Tab. 21: Werkstoffe mit Prozessmedienkontakt

14.5 Abmessungen

Maße in mm

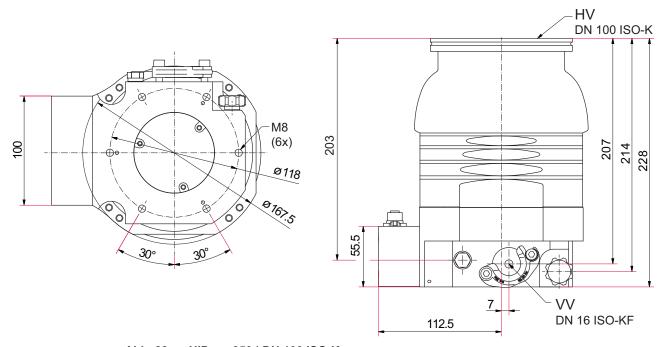


Abb. 22: HiPace 350 | DN 100 ISO-K

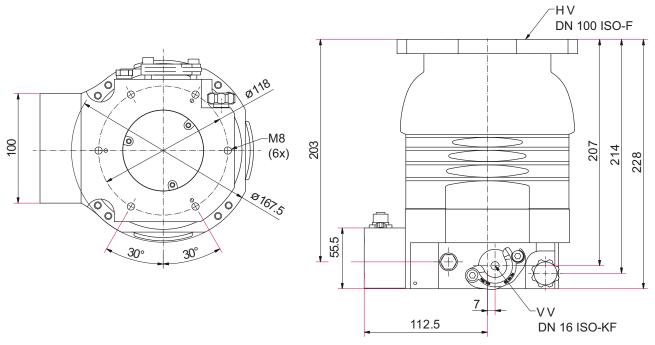


Abb. 23: HiPace 350 | DN 100 ISO-F

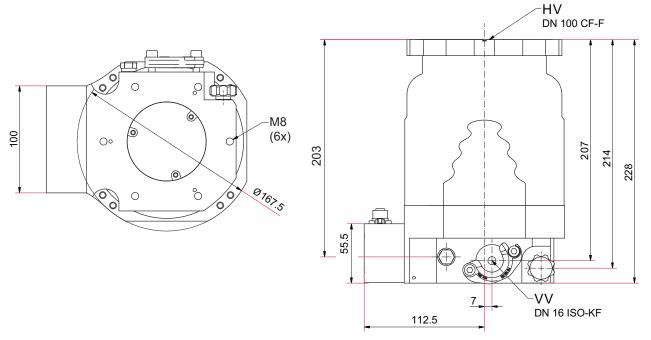


Abb. 24: HiPace 350 | DN 100 CF-F

EG Konformitätserklärung

Diese Konformitätserklärung wurde unter der alleinigen Verantwortung des Herstellers ausgestellt.

Erklärung für Produkt(e) vom Typ:

Turbopumpe

HiPace 350

Hiermit erklären wir, dass das aufgeführte Produkt allen einschlägigen Bestimmungen folgender **europäischer Richtlinien** entspricht.

- Maschinen 2006/42/EG (Anhang II, Nr. 1 A)
- Elektromagnetische Verträglichkeit 2014/30/EU
- Beschränkung der Verwendung bestimmter gefährlicher Stoffe 2011/65/EU
- Beschränkung der Verwendung bestimmter gefährlicher Stoffe, delegierte Richtlinie 2015/863/EU

Harmonisierte Normen und angewendete, nationale Normen und Spezifikationen:

DIN EN ISO 12100 : 2011

DIN EN 61326-1 : 2013

DIN EN 1012-2 : 2011

DIN EN 62061 : 2016

DIN EN 61000-3-2 : 2019

DIN EN 61000-3-3 : 2020

DIN EN 61010-1 : 2020

DIN EN 61010-1 : 2020

DIN EN 61010-1 : 2020

Bevollmächtigter für die Zusammenstellung der technischen Unterlagen ist Herr Tobias Stoll, Pfeiffer Vacuum GmbH, Berliner Straße 43, 35614 Aßlar.

Unterschrift:

Pfeiffer Vacuum GmbH Berliner Straße 43 35614 Aßlar Deutschland

(Daniel Sälzer)

Geschäftsführer

Aßlar, 2022-11-07

UK Konformitätserklärung

Diese Konformitätserklärung wurde unter der alleinigen Verantwortung des Herstellers ausgestellt.

Erklärung für Produkt(e) vom Typ:

Turbopumpe

HiPace 350

Hiermit erklären wir, dass das aufgeführte Produkt allen einschlägigen Bestimmungen folgender **britischer Richtlinien** entspricht.

Lieferung von Maschinen (Sicherheit) Verordnung 2008 Elektromagnetische Verträglichkeit Vorschriften 2016

Beschränkung der Verwendung bestimmter gefährlicher Stoffe in elektrischer und elektronischer Ausrüstung Verordnung 2012

Angewendete Normen und Spezifikationen:

ISO 12100:2010 IEC 61326-1:2012
EN 1012-2+A1:1996 IEC 62061:2005
IEC 61000-3-2:2018 ISO 21360-1:2020
IEC 61000-3-3+A1:2013 ISO 21360-4:2018
IEC 61010-1+A1:2010 IEC 63000:2018

Autorisierter Repräsentant im Vereinigten Königreich und der bevollmächtigte Vertreter für die Zusammenstellung der technischen Unterlagen ist Pfeiffer Vacuum Ltd, 16 Plover Close, Interchange Park, MK169PS Newport Pagnell

Unterschrift:

Berliner Straße 43 35614 Aßlar Deutschland

Pfeiffer Vacuum GmbH

(Daniel Sälzer) Aßlar, 2022-11-07

Geschäftsführer

Table of contents

1	Abo	ut this manual	69
	1.1	Validity	69
		1.1.1 Applicable documents	69
		1.1.2 Variants	69
	1.2	Target group	69
	1.3	Conventions	69
		1.3.1 Instructions in the text	69
		1.3.2 Pictographs	70
		1.3.3 Stickers on the product	70
	4.4	1.3.4 Abbreviations	71
	1.4	Trademark proof	71
2	Safe	•	72
	2.1	General safety information	72
	2.2	Safety instructions	72
	2.3	Safety precautions	76
	2.4	Limits of use of product	77
	2.5	Proper use	77
	2.6	Foreseeable improper use	77
	2.7	Personnel qualification	78 79
		2.7.1 Ensuring personnel qualification2.7.2 Personnel qualification for maintenance and repair	78 79
		2.7.3 Advanced training with Pfeiffer Vacuum	79
		2.7.0 Advanced training with Tellier vacuum	7.5
3		duct description	80
	3.1	Function	80
		3.1.1 Cooling	80
		3.1.2 Rotor bearing	80
	2.2	3.1.3 Drive	80 81
	3.2	Identifying the product 3.2.1 Product types	81
		3.2.2 Product types 3.2.2 Product features	81
	3.3	Scope of delivery	81
_			
4		sportation and Storage	82
	4.1 4.2	Transport Storage	82 82
	4.2	Storage	
5		allation	83
	5.1	Preparatory work	83
	5.2	Fastening turbopump to bottom part	83
	5.3	Connecting the high vacuum side	84
		5.3.1 Requirements for the dimensioning of a counter flange	84 85
		5.3.2 Consider the earthquake protection5.3.3 Using a splinter shield or protective screen	85
		5.3.4 Using the vibration compensator	86
		5.3.5 Mounting orientations	86
		5.3.6 Attaching ISO-K flange onto ISO-K	86
		5.3.7 Attaching ISO-K flange to ISO-F	87
		5.3.8 Attaching CF flange to CF-F	88
	5.4	Connect the fore-vacuum side	90
	5.5	Connecting accessories	91
	5.6	Connecting the electrical supply	92
		5.6.1 Ground the turbopump	92
		5.6.2 Establishing electric connection	92
6	Ope	ration	94

	6.1	Commissioning	94
	6.2	Operating modes 6.2.1 Operation without operating unit	95 95
		6.2.2 Operation via multi-function connection "X3"	95 95
		6.2.3 Operation via connection "E74"	95
		6.2.4 Operation via Pfeiffer Vacuum control unit	95
		6.2.5 Operation via field bus	95
	6.3	Switching on the turbopump	96
	6.4	Operation monitoring 6.4.1 Operating mode display via LED	96 96
		6.4.2 Temperature monitoring	96
	6.5	Switching off and venting	97
		6.5.1 Switching off	97
		6.5.2 Venting	97
7		ntenance	99
	7.1 7.2		99 99
	7.3		100
		7.3.1 Remove the operating fluid reservoir	101
		7.3.2 Assemble the operating fluid reservoir	102
	7.4	Replacing the electronic drive unit	103
		7.4.1 Dismantle the electronic drive unit	104
		7.4.2 Installing electronic drive unit7.4.3 Confirming speed specification	104 105
8	Dec	ommissioning	106
	8.1	Shutting down for longer periods	106
	8.2	Recommissioning	106
9	Recy	ycling and disposal	107
	9.1	General disposal information	107
	9.2	Dispose of turbopumps	107
10	Malf	unctions	108
11	Serv	rice solutions by Pfeiffer Vacuum	110
12	Spar	re parts HiPace 350	112
13		essories	113
		Accessory information	113
	13.2	Ordering accessories	113
14		nnical data and dimensions	116
		General	116
		Technical data Characteristics	116 119
		Substances in contact with the media	119
		Dimensions	120
	EC [Declaration of Conformity	122
	UK [Declaration of Conformity	123

List of tables

Tbl. 1:	Abbreviations used in this document	71
Tbl. 2:	Permissible ambient conditions	77
Tbl. 3:	Product designation of Pfeiffer Vacuum HiPace turbopumps	81
Tbl. 4:	Turbopump features	81
Tbl. 5:	Requirements for fastening the turbopumps to the bottom part	84
Tbl. 6:	Requirements for the dimensioning of high vacuum connection supplied by the customer	85
Tbl. 7:	Reduction of the pumping speed when using a splinter shield or protective screen	85
Tbl. 8:	Factory setting of the electronic drive unit for turbopumps when delivered	94
Tbl. 9:	Behavior and meaning of the LEDs on the electronic drive unit	96
Tbl. 10:	Factory settings for delayed venting in turbopumps	98
Tbl. 11:	Maintenance intervals	100
Tbl. 12:	Characteristic nominal rotation speeds of the turbopumps	105
Tbl. 13:	Troubleshooting turbopumps	109
Tbl. 14:	Available spare parts	112
Tbl. 15:	Accessories	114
Tbl. 16:	Other accessories for TC 120 48 V DC	115
Tbl. 17:	Conversion table: Pressure units	116
Tbl. 18:	Conversion table: Units for gas throughput	116
Tbl. 19:	Technical data for HiPace 350 TC 110	117
Tbl. 20:	Technical data for HiPace 350 TC 120	119
Tbl. 21:	Materials that make contact with the process media	120

List of figures

Fig. 1:	Position of the stickers on the product	70
Fig. 2:	HiPace 350 design	80
Fig. 3:	Example: Secure against displacement and tipping caused by external vibrations	85
Fig. 4:	Recommended alignment of the fore-vacuum connection when using oil- sealed backing pumps	86
Fig. 5:	Flange connection ISO-K to ISO-F, bracket screws	87
Fig. 6:	Flange connection ISO-K to ISO-F, hexagon head screw and tapped hole	87
Fig. 7:	Flange connection ISO-K to ISO-F, stud screw and tapped hole	88
Fig. 8:	Flange connection ISO-K to ISO-F, stud screw and through hole	88
Fig. 9:	Flange connection CF-F, hexagon head screw and through hole	89
Fig. 10:	Flange connection CF-F, stud screw and tapped hole	89
Fig. 11:	Flange connection CF-F, stud screw and through hole	89
Fig. 12:	Example of fore-vacuum connection	90
Fig. 13:	Example of accessory connection via adapter TCS 12	91
Fig. 14:	Example: Connect the grounding cable	92
Fig. 15:	Connecting electronic drive unit to power supply pack	93
Fig. 16:	Remove the operating fluid reservoir	102
Fig. 17:	Assemble the operating fluid reservoir	103
Fig. 18:	Removal of electronic drive unit TC 110 TC 120	104
Fig. 19:	Installation of electronic drive unit TC 110 TC 120	105
Fig. 20:	Spare parts HiPace 350	112
Fig. 21:	Gas throughput characteristic depending on the rotation speed	119
Fig. 22:	HiPace 350 DN 100 ISO-K	120
Fig. 23:	HiPace 350 DN 100 ISO-F	120
Fia 24 [.]	HiPace 350 LDN 100 CF-F	121

1 About this manual

IMPORTANT

Read carefully before use.

Keep the manual for future consultation.

1.1 Validity

These operating instructions are a customer document of Pfeiffer Vacuum. The operating instructions describe the functions of the named product and provide the most important information for the safe use of the device. The description is written in accordance with the valid directives. The information in these operating instructions refers to the product's current development status. The document shall remain valid provided that the customer does not make any changes to the product.

1.1.1 Applicable documents

Document	Number
Operating instructions, "electronic drive unit" TC 110 standard PT 0204 BN	
Operating instructions for "electronic drive unit" TC 110 PB PT 0245 BN	
Operating instructions, electronic drive unit TC 110 E74 PT 0301 BN	
Operating instructions for "electronic drive unit" TC 110 RS PT 0351 BN	
Declaration of conformity	Part of this document

You can find these documents in the Pfeiffer Vacuum Download Center.

1.1.2 Variants

- HiPace 350, DN 100 ISO-K, TC 110
- HiPace 350, DN 100 ISO-K, TC 120
- HiPace 350, DN 100 ISO-F, TC 110
- HiPace 350, DN 100 ISO-F, TC 120
- HiPace 350, DN 100 CF-F, TC 110
- HiPace 350, DN 100 CF-F, TC 120

1.2 Target group

These operating instructions are aimed at all persons performing the following activities on the product:

- Transportation
- Setup (Installation)
- Usage and operation
- Decommissioning
- Maintenance and cleaning
- Storage or disposal

The work described in this document is only permitted to be performed by persons with the appropriate technical qualifications (expert personnel) or who have received the relevant training from Pfeiffer Vac-

1.3 Conventions

1.3.1 Instructions in the text

Usage instructions in the document follow a general structure that is complete in itself. The required action is indicated by an individual step or multi-part action steps.

Individual action step

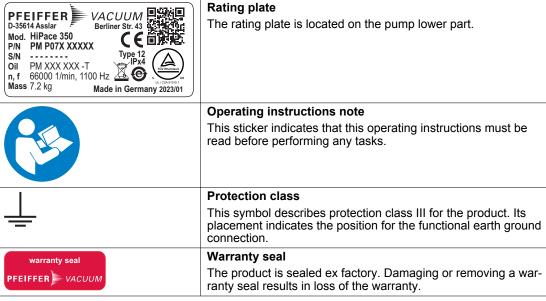
A horizontal, solid triangle indicates the only step in an action.

► This is an individual action step.

Sequence of multi-part action steps

The numerical list indicates an action with multiple necessary steps.

- 1. Step 1
- 2. Step 2
- 3. ...


1.3.2 Pictographs

Pictographs used in the document indicate useful information.

1.3.3 Stickers on the product

This section describes all the stickers on the product along with their meanings.

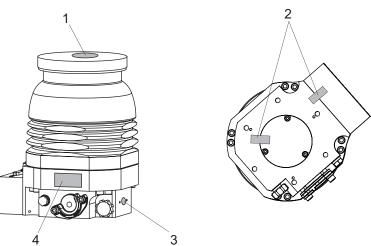


Fig. 1: Position of the stickers on the product

- 1 Operating instructions note
- 2 Warranty seal

- Information regarding ground connection
- A Rating plate of the turbopump

1.3.4 Abbreviations

Abbreviation	Meaning in this document
CF	Flange: Metal-sealed connector in accordance with ISO 3669
d	Diameter value (in mm)
DC	Direct current
DN	Nominal diameter as size description
f	Rotation speed value of a vacuum pump (frequency, in rpm or Hz)
HPU	Handheld Programming Unit. Aid for control and monitoring of pump parameters
HV	High vacuum flange, high vacuum side
ISO	Flange: Connection in accordance with ISO 1609 and ISO 2861
LED	Light emitting diode
FE	Functional earth
FKM	Fluoropolymer rubber
[P:xxx]	Electronic drive unit control parameters. Printed in bold as a three-digit number in square brackets. Frequently displayed in conjunction with a short description.
	Example: [P:312] software version
WAF	Width Across Flats
T	Temperature (in °C)
TC	Turbopump electronic drive unit (turbo controller)
TPS	Voltage supply (turbo power supply)
VV	Fore-vacuum flange, fore-vacuum connection
Х3	15-pole D-Sub connecting socket on the turbopump electronic drive unit

Tbl. 1: Abbreviations used in this document

1.4 Trademark proof

- Torx® is a trademark of Acument Intellectual Properties, LLC.
- Profibus® is a trademark of Profibus Nutzerorganisation e.V.

2 Safety

2.1 General safety information

The following 4 risk levels and 1 information level are taken into account in this document.

A DANGER

Immediately pending danger

Indicates an immediately pending danger that will result in death or serious injury if not observed.

► Instructions to avoid the danger situation

WARNING

Potential pending danger

Indicates a pending danger that could result in death or serious injury if not observed.

► Instructions to avoid the danger situation

A CAUTION

Potential pending danger

Indicates a pending danger that could result in minor injuries if not observed.

► Instructions to avoid the danger situation

NOTICE

Danger of damage to property

Is used to highlight actions that are not associated with personal injury.

Instructions to avoid damage to property

Notes, tips or examples indicate important information about the product or about this document.

2.2 Safety instructions

All safety instructions in this document are based on the results of the risk assessment carried out in accordance with Machinery Directive 2006/42/EC Annex I and EN ISO 12100 Section 5. Where applicable, all life cycle phases of the product were taken into account.

Risks during transport

WARNING

Danger of serious injury due to falling objects

Due to falling objects there is a risk of injuries to limbs through to broken bones.

- ▶ Take particular care and pay special attention when transporting products manually.
- ▶ Do not stack the products.
- ► Wear protective equipment, e.g. safety shoes.

Risks during installation

A DANGER

Danger to life from electric shock

Power supply packs that are not specified or are not approved will lead to severe injury to death.

- ▶ Make sure that the power supply pack meets the requirements for double isolation between mains input voltage and output voltage, in accordance with IEC 61010-1 IEC 60950-1 and IEC 62368-1.
- ► Make sure that the power supply pack meets the requirements in accordance with IEC 61010-1 IEC 60950-1 and IEC 62368-1.
- Where possible, use original power supply packs or only power supply packs that correspond with the applicable safety regulations.

WARNING

Risk of danger to life through missing mains disconnection device

The vacuum pump and electronic drive unit are **not** equipped with a mains disconnection device (mains switch).

- Install a mains disconnection device according to SEMI-S2.
- ► Install a circuit breaker with an interruption rating of at least 10,000 A.

WARNING

Risk of injury due to incorrect installation

Dangerous situations may arise from unsafe or incorrect installation.

- ▶ Do not carry out your own conversions or modifications on the unit.
- Ensure the integration into an Emergency Off safety circuit.

WARNING

Risk of cuts on moving, sharp-edged parts when reaching into the open high vacuum flange

With the high vacuum flange open, access to sharp-edged parts is possible. A manual rotation of the rotor increases the danger situation. There is the risk of cuts, up to the separation of body parts (e.g. fingertips). There is a risk of hair and loose clothing being drawn in. Objects falling in destroy the turbopump during subsequent operation.

- ▶ Only remove the original protective covers immediately prior to connecting the high vacuum flange.
- ▶ Do not reach into the high vacuum connection.
- ▶ Wear protective gloves during installation.
- ▶ Do not start the turbopump with open vacuum connections.
- ▶ Always carry out the mechanical installation before electrical connection.
- ► Prevent access to the high vacuum connection of the turbopump from the operator side (e.g. open vacuum chamber).

WARNING

Danger to life from poisoning where toxic process media leak from damaged connections

Sudden twisting of the turbopump in the event of a fault causes fittings to accelerate. There is the risk of damaging on-site connections (e.g., fore-vacuum line) and resulting leaks. This results in leakage of process media. In processes involving toxic media, there is a risk of injury and danger to life due to poisoning.

- ▶ Keep masses connected to the turbopump as low as possible.
- Use flexible lines to connect to the turbopump where necessary.

WARNING

Risk of injury caused by the turbopump breaking away with the vibration compensator in the event of a malfunction

Sudden jamming of the rotor generates high destructive torques in accordance with ISO 27892. When using a vibration compensator, this will probably lead to the turbopump being sheared off in use. The energy that this would release could throw the entire turbopump or shattered pieces from its interior through the surrounding space. Potentially dangerous gases can escape. There is a risk of very serious injuries, including death, and extensive property damage.

- ► Take suitable safety precautions on-site for the compensation of the occurring torques.
- Before installing a vibration compensator, you must first of all contact Pfeiffer Vacuum.

WARNING

Danger of cut injuries from unexpected start up.

The use of mating plugs of the electronic drive unit (accessories) enables the automatic run-up of the vacuum pump as soon the power is turned on. Attaching mating plugs before or during the installation leads to the movement of parts hence the risk of cut injuries by sharp-edged in the exposed high vacuum flange.

- Only connect mating plugs after the mechanical installation.
- Only switch on the vacuum pump immediately prior to operation.

Risks during operation

WARNING

Risk of burns on hot surfaces when using additional equipment for heating during operation

The use of additional equipment for heating the vacuum pump or for optimizing the process generates very high temperatures on surfaces that can be touched. There is a risk of burning.

- If necessary, set up a contact quard.
- ▶ If necessary, apply the warning stickers provided for this at the danger points.
- Ensure adequate cooling down before working on the vacuum pump or in its vicinity.
- Wear protective equipment, e.g., gloves.

WARNING

Risk of serious injury in the event of vacuum pump destruction due to over pressure

Gas entry with very high over pressure results in destruction of the vacuum pump. There is a risk of serious injury due to ejected objects.

- ▶ Never exceed the permissible 1500 hPa (absolute) inlet pressure on the suction side or the venting and sealing gas connection.
- Make sure that high, process-related over pressures cannot directly enter the vacuum pump.

A CAUTION

Risk of injuries due to contact with vacuum when venting

While venting the vacuum pump there is a risk of minor injuries due to the direct contact of body parts with the vacuum, e.g. hematomas.

- Do not fully unscrew the venting screw out of the housing during venting.
- Keep a distance from automatic venting device, such as venting valves.

Risks during maintenance, decommissioning and disposal

WARNING

Danger to life from electric shock during maintenance and service work

The device is only completely de-energized when the mains plug has been disconnected and the turbopump is at a standstill. There is a danger to life from electric shock when making contact with live components.

- ▶ Before performing all work, switch off the main switch.
- ▶ Wait until the turbopump comes to a standstill (rotation speed f = 0).
- Remove the mains plug from the device.
- Secure the device against unintentional restarting.

WARNING

Health hazard through poisoning from toxic contaminated components or devices

Toxic process media result in contamination of devices or parts of them. During maintenance work, there is a risk to health from contact with these poisonous substances. Illegal disposal of toxic substances causes environmental damage.

- Take suitable safety precautions and prevent health hazards or environmental pollution by toxic process media.
- Decontaminate affected parts before carrying out maintenance work.
- Wear protective equipment.

WARNING

Risk of cuts on moving, sharp-edged parts when reaching into the open high vacuum connec-

Incorrect handling of the turbopump before maintenance work results in hazardous situations with risk of injury. There is a risk of cuts from accessing sharp-edged, rotating parts when removing the turbopump.

- ▶ Wait until the turbopump comes to a standstill (rotation speed f = 0).
- Switch the turbopump off properly.
- Secure the turbopump against re-start.
- Seal open connections immediately following removal, using the original protective cover.

WARNING

Risk of poisoning from contact with harmful substances

The operating fluid reservoir and parts of the turbopump may contain toxic substances from pumped media.

- Decontaminate affected parts before carrying out maintenance work.
- Prevent health hazards or environmental impacts with adequate safety precautions.
- Observe the operating fluid safety data sheet.
- Dispose of the operating fluid reservoir according to applicable regulations.

Risks in the event of malfunctions

WARNING

Danger to life from electric shock in the event of a fault

In the event of a fault, devices connected to the mains may be live. There is a danger to life from electric shock when making contact with live components.

Always keep the mains connection freely accessible so you can disconnect it at any time.

WARNING

Danger to life from the turbopump breaking away in the event of a fault

Sudden jamming of the rotor generates high destructive torques in accordance with ISO 27892. If the turbopump is **not** properly secured, it can shear off. The energy that this would release could throw the entire turbopump or shattered pieces from its interior through the surrounding space. Potentially dangerous gases can escape. There is a risk of very serious injuries, including death, and extensive property damage.

- ► Follow the installation instructions for this turbopump.
- Observe the requirements regarding stability and design of the counter flange.
- ▶ Use only original accessories or fixing material approved by Pfeiffer Vacuum for the installation.

WARNING

Danger to life from poisoning where toxic process media leak from damaged connections

Sudden twisting of the turbopump in the event of a fault causes fittings to accelerate. There is the risk of damaging on-site connections (e.g., fore-vacuum line) and resulting leaks. This results in leakage of process media. In processes involving toxic media, there is a risk of injury and danger to life due to poisoning.

- Keep masses connected to the turbopump as low as possible.
- Use flexible lines to connect to the turbopump where necessary.

WARNING

Risk of injury caused by the turbopump breaking away with the vibration compensator in the event of a malfunction

Sudden jamming of the rotor generates high destructive torques in accordance with ISO 27892. When using a vibration compensator, this will probably lead to the turbopump being sheared off in use. The energy that this would release could throw the entire turbopump or shattered pieces from its interior through the surrounding space. Potentially dangerous gases can escape. There is a risk of very serious injuries, including death, and extensive property damage.

- ► Take suitable safety precautions on-site for the compensation of the occurring torques.
- ▶ Before installing a vibration compensator, you must first of all contact Pfeiffer Vacuum.

2.3 Safety precautions

Duty to provide information on potential dangers

The product holder or user is obliged to make all operating personnel aware of dangers posed by this product.

Every person who is involved in the installation, operation or maintenance of the product must read, understand and adhere to the safety-related parts of this document.

Infringement of conformity due to modifications to the product

The Declaration of Conformity from the manufacturer is no longer valid if the operator changes the original product or installs additional equipment.

Following the installation into a system, the operator is required to check and re-evaluate the conformity of the overall system in the context of the relevant European Directives, before commissioning that system.

General safety precautions when handling the product

- Observe all applicable safety and accident prevention regulations.
- ▶ Check that all safety measures are observed at regular intervals.
- Do not expose body parts to the vacuum.
- ▶ Always ensure a secure connection to the earthed conductor (PE).
- ▶ Never disconnect plug connections during operation.
- Observe the above shutdown procedures.
- ▶ Before working on the high vacuum connection, wait until the rotor has stopped completely (rotation speed f = 0).

- ▶ Never put the device into operation with the high vacuum connection open.
- ► Keep lines and cables away from hot surfaces (> 70°C).
- ▶ Never fill or operate the unit with cleaning agents or cleaning agent residues.
- ▶ Do not carry out your own conversions or modifications on the unit.
- Observe the unit protection class prior to installation or operation in other environments.

2.4 Limits of use of product

Installation location	Weatherproof (internal space)
Air pressure	530 hPa to 1060 hPa
Installation altitude	Max. 5000 m
Rel. air humidity	max. 80%, at T < 31°C,
	up to max. 50% at T < 40°C
Protection class	III
Overvoltage category	II
Permissible protection degree	IP44,
	Type 12 according to UL 50E
Degree of pollution	2
Ambient temperature	5 °C to 30 °C with convection cooling without gas throughput
	5°C to 35°C with air cooling
	5°C to 40°C with water cooling
Maximum permissible surrounding magnetic field	See "Technical data"
Maximum irradiated thermal output	2.4 W
Maximum permissible rotor temperature of the turbo- pump	90 °C
Maximum permissible bakeout temperature at the high vacuum flange	120 °C

Tbl. 2: Permissible ambient conditions

Notes on ambient conditions

The specified permissible ambient temperatures apply to operation of the turbopump at maximum permissible backing pressure or at maximum gas throughput, depending on the cooling type. The turbopump is intrinsically safe thanks to redundant temperature monitor-

- The reduction in backing pressure or gas throughput permits operation of the turbopump at higher ambient temperatures.
- If the maximum permissible operating temperature of the turbopump is exceeded, the electronic drive unit first reduces the drive output and then switches it off where necessary.

2.5 Proper use

- Use the turbopump only for generating vacuum.
- Use the turbopump only in combination with a suitable backing pump that can deliver up to the required maximum fore-vacuum pressure.
- Use the turbopump only in closed indoor areas.
- Use the turbopump only for the evacuation of dry and inert gases.

2.6 Foreseeable improper use

Improper use of the product invalidates all warranty and liability claims. Any use that is counter to the purpose of the product, whether intentional or unintentional, is regarded as improper use; in particular:

- Establishing the voltage supply without correct installation
- Installing with non-specified fastening material

- Pumping explosive media
- Pumping of corrosive media
- · Pumping of condensing vapors
- Pumping of fluids
- Pumping of dust
- Operating with impermissible high gas throughput
- Operating with impermissible high fore-vacuum pressure
- Operation with excessive irradiated heat output
- Operating in impermissible high magnetic fields
- Operating in an incorrect gas mode
- Venting with impermissible high venting rates
- Using for pressure generation
- Using in areas with ionizing radiation
- Operating in potentially explosive areas
- · Using in systems in which sporadic loads and vibrations or periodic forces act on the device
- Causing of hazardous operating conditions by a presetting on the electronic drive unit that is contrary to the process
- Using of accessories or spare parts that are not listed in these instructions

2.7 Personnel qualification

The work described in this document may only be carried out by persons who have appropriate professional qualifications and the necessary experience or who have completed the necessary training as provided by Pfeiffer Vacuum.

Training people

- 1. Train the technical personnel on the product.
- Only let personnel to be trained work with and on the product when under the supervision of trained personnel.
- 3. Only allow trained technical personnel to work with the product.
- 4. Before starting work, make sure that the commissioned personnel have read and understood these operating instructions and all applicable documents, in particular the safety, maintenance and repair information.

2.7.1 Ensuring personnel qualification

Specialist for mechanical work

Only a trained specialist may carry out mechanical work. Within the meaning of this document, specialists are people responsible for construction, mechanical installation, troubleshooting and maintenance of the product, and who have the following qualifications:

- Qualification in the mechanical field in accordance with nationally applicable regulations
- Knowledge of this documentation

Specialist for electrotechnical work

Only a trained electrician may carry out electrical engineering work. Within the meaning of this document, electricians are people responsible for electrical installation, commissioning, troubleshooting, and maintenance of the product, and who have the following qualifications:

- Qualification in the electrical engineering field in accordance with nationally applicable regulations
- Knowledge of this documentation

In addition, these individuals must be familiar with applicable safety regulations and laws, as well as the other standards, guidelines, and laws referred to in this documentation. The above individuals must have an explicitly granted operational authorization to commission, program, configure, mark, and earth devices, systems, and circuits in accordance with safety technology standards.

Trained individuals

Only adequately trained individuals may carry out all works in other transport, storage, operation and disposal fields. Such training must ensure that individuals are capable of carrying out the required activities and work steps safely and properly.

2.7.2 Personnel qualification for maintenance and repair

Advanced training courses

Pfeiffer Vacuum offers advanced training courses to maintenance levels 2 and 3.

Adequately trained individuals are:

- Maintenance level 1
 - Customer (trained specialist)
- Maintenance level 2
 - Customer with technical education
 - Pfeiffer Vacuum service technician
- Maintenance level 3
 - Customer with Pfeiffer Vacuum service training
 - Pfeiffer Vacuum service technician

2.7.3 Advanced training with Pfeiffer Vacuum

For optimal and trouble-free use of this product, Pfeiffer Vacuum offers a comprehensive range of courses and technical trainings.

For more information, please contact Pfeiffer Vacuum technical training.

3 Product description

3.1 Function

The turbopump forms a compact unit with the electronic drive unit. The Pfeiffer Vacuum power supply packs serve as voltage supply.

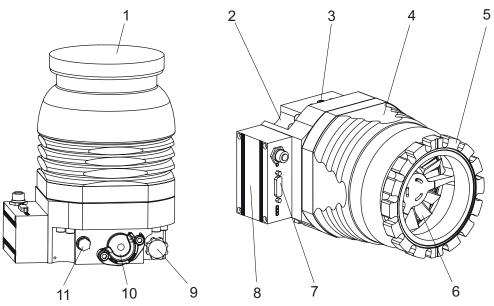


Fig. 2: HiPace 350 design

- 1 Protective cover for the high vacuum flange
- 2 Pump bottom part
- 3 Ground terminal (alternative: mounting surface for air cooling)
- 4 Pump housing
- 5 High vacuum connection, DN 100 CF-F
- 6 Rotor

- 7 Multifunction connection "X3"
- 8 Electronic drive unit
- 9 Venting screw
- 10 Blind cover for the fore-vacuum connection, DN 16 ISO-KF
- 11 Sealing gas connection

3.1.1 Cooling

- Convection cooling
- Air cooling (optional)
- Water cooling (optional)

The electronic drive unit automatically regulates the drive power down in the event of excessive temperatures.

3.1.2 Rotor bearing

Hybrid-bearing turbopump

- High vacuum side: wear-free permanent magnetic bearing
- Fore-vacuum side: ball bearing with ceramic balls

Turbopumps from the hybrid bearing HiPace series use ceramic ball bearings for the rotor bearing on the fore-vacuum side. The operating fluid pump provides a defined lubrication and continuous functioning of the ball bearings.

3.1.3 Drive

- Electronic drive unit TC 110
 - Operating voltage 24 V DC
- Electronic drive unit TC 120
 - Operating voltage 48 V DC

3.2 Identifying the product

- ► To ensure clear identification of the product when communicating with Pfeiffer Vacuum, always keep all of the information on the rating plate to hand.
- ► Learn about certifications through test seals on the product or at www.certipedia.com with company ID no. 000021320.

3.2.1 Product types

The product designation of Pfeiffer Vacuum turbopumps from the HiPace series is composed of the family name, the size (which is based on the pumping speed of the vacuum pump) and, if required, an additional feature description.

Family	Size/model	Property, attribute, feature
HiPace	10 to 2800	none = Standard version
		mini = Compact version
		U = Overhead version
		C = Corrosive gas version
		P = Process
		M = Active magnetic bearing
		T = Temperature management
		Plus = Low vibration, low magnetic field
		E = High efficiency
		H = High compression
		I = Ion implantation

Tbl. 3: Product designation of Pfeiffer Vacuum HiPace turbopumps

3.2.2 Product features

Feature	Version				
HV flange	DN 100 ISO-K DN 100 ISO-F DN 100 CF-F				
Flange material	Aluminium Stainless steel				

Tbl. 4: Turbopump features

3.3 Scope of delivery

- Turbopump with electronic drive unit
- Protective cover for the high vacuum connection
- Protective cover for the fore-vacuum connection
- Operating instructions

4 Transportation and Storage

4.1 Transport

WARNING

Danger of serious injury due to falling objects

Due to falling objects there is a risk of injuries to limbs through to broken bones.

- ► Take particular care and pay special attention when transporting products manually.
- Do not stack the products.
- ▶ Wear protective equipment, e.g. safety shoes.

Recommendation

Pfeiffer Vacuum recommends keeping the transport packaging and original protective cover.

Safe transport of the product

- ► Transport the turbopump only within the permissible temperature limits.
- Observe weight specified on the rating plate.
- ▶ Where possible, always transport or ship the turbopump in its original packaging.
- ► Always carry the turbopump with both hands.
- ▶ Remove the protective cover only immediately prior to installation.

4.2 Storage

We recommend

Pfeiffer Vacuum recommends storing the products in their original transport packaging.

Storing the turbopump

- 1. Seal all flange openings with the original protective caps.
- 2. Seal all other connections (e.g. venting connection) with the corresponding original parts.
- 3. Store the turbopump only indoors within the permissible temperature limits.
- 4. In rooms with humid or aggressive atmospheres: Hermetically seal the turbopump together with a drying agent in a plastic bag.

5 Installation

The installation of the turbopump and its fastening is of outstanding importance. The rotor of the turbopump revolves at very high speed. In practice it is not possible to exclude the risk of the rotor touching the stator (e.g. due to the penetration of foreign bodies into the high vacuum connection). The kinetic energy released acts on the housing and on the anchoring of the turbopump within fractions of a second.

Comprehensive tests and calculations conforming to ISO 27892 confirm the safety of the turbopump both against crashes (destruction of the rotor blades) and against bursting (breakage of the rotor shaft). The experimental and theoretical results are expressed in safety measures and recommendations for the correct and safe fastening of the turbopump.

5.1 Preparatory work

WARNING

Risk of cuts on moving, sharp-edged parts when reaching into the open high vacuum flange

With the high vacuum flange open, access to sharp-edged parts is possible. A manual rotation of the rotor increases the danger situation. There is the risk of cuts, up to the separation of body parts (e.g. fingertips). There is a risk of hair and loose clothing being drawn in. Objects falling in destroy the turbopump during subsequent operation.

- Only remove the original protective covers immediately prior to connecting the high vacuum flange.
- Do not reach into the high vacuum connection.
- Wear protective gloves during installation.
- ▶ Do not start the turbopump with open vacuum connections.
- ▶ Always carry out the mechanical installation before electrical connection.
- ▶ Prevent access to the high vacuum connection of the turbopump from the operator side (e.g. open vacuum chamber).

General notes for the installation of vacuum components

- ▶ Choose an installation location that permits access to the product and to supply lines at all times.
- ▶ Observe the ambient conditions given for the limits of use.
- ▶ Provide the highest possible level of cleanliness during assembly.
- ▶ Ensure that flange components during installation are grease-free, dust-free and dry.

Select the installation location

- 1. Observe the instructions for transport to the installation location.
- 2. Make sure that there are sufficient cooling options for the turbopump.
- 3. Install suitable shielding if the surrounding magnetic fields exceed the permissible levels.
- 4. Install suitable shielding so that the irradiated thermal output does not exceed the permissible values when high temperatures occur due to the process.
- 5. Observe the permissible temperatures for the vacuum connection.

5.2 Fastening turbopump to bottom part

NOTICE

Damage to the vacuum pump due to force acting on the high vacuum side

When fastened to the pump bottom part and simultaneously attached to the high vacuum side with a rigid pipe connection, there is risk of reactive forces acting on the turbopump. This can produce mechanical loads up to and including destruction of the turbopump.

- Create a flexible connection to the high vacuum flange.
- ▶ Observe the requirements for fastening the turbopump to the bottom part.
- ▶ If the rotor blocks suddenly, make sure that all the torques generated are absorbed by the mounting plate on the operator side.

Required aids

- Hole circle in accordance with the dimensions of the turbopump
- Fixing screws, strength class ≥ 8.8, galvanized
- Washer, DIN EN ISO 7090 or DIN EN ISO 7092
- Mounting plate supplied by the customer

Required tools

- Allen key, WAF 6
- Wrench, alternative for DIN 933 hexagon head screws
- Calibrated torque wrench (tightening factor ≤ 1.6)

Fastening turbopump to bottom part

- 1. Remove existing plastic plugs from the pump bottom part.
- 2. Place the turbopump upright on the mounting plate.
- 3. Bolt the pump bottom part to the mounting plate with the required number of permissible fixing screws and washers.
 - Observe the specified screw-in depth.
 - Observe the permissible tightening torque.

Turbopump	Mounting plate Minimum thickness Tensile strength	Thread size	Quantity	Screw-in depth	Tightening tor- que
HiPace 350	3 mm > 270 MPa	M8	6	≥ 1.3 × d	25 Nm ± 10 %
HiPace 400					
HiPace 450					
HiPace 700					
HiPace 800					

Tbl. 5: Requirements for fastening the turbopumps to the bottom part

5.3 Connecting the high vacuum side

5.3.1 Requirements for the dimensioning of a counter flange

NOTICE

Risk of damage due to incorrect counter flange design

Unevenness on the operator-side counter flange results in stresses in the vacuum pump housing, even when properly attached. This can produce leakage or negative changes in running characteristics.

- ► Adhere to the shape tolerances for the counter flange.
- ▶ Observe the maximum flatness deviations over the entire surface.

Superstructural parts and fittings on the high vacuum connection

Installing superstructural parts and fittings to the high vacuum connection is the responsibility of the operating company. The loading capacity of the high vacuum flange is specific for the turbopump used.

- The total weight of superstructural parts must not exceed the maximum axial values specified.
- Make sure that all the torques generated if the rotor blocks suddenly, are absorbed by the system on the operator side and the high vacuum connection.
- Only use the approved mounting kits of Pfeiffer Vacuum for the high vacuum connection of the turbopump.

Parameter	HiPace 350
Maximum torque occurring in the event of a burst ⁶⁾	3500 Nm
Maximum permissible axial load on the high vacuum flange ⁷⁾	1000 N (equivalent to 100 kg)

Parameter	HiPace 350
Flatness	± 0.05 mm
Minimum tensile strength of the flange material in all operating states in relation to the engagement depth of the fixing screws	170 N/mm ² at 2.5 x d 270 N/mm ² at 1.5 x d
Maximum permissible rotor temperature	90 °C

Tbl. 6: Requirements for the dimensioning of high vacuum connection supplied by the customer

5.3.2 Consider the earthquake protection

NOTICE

Vacuum pump damage caused by external vibrations

In the event of earthquakes or other external vibrations, there is the risk of the rotor coming into contact with the safety bearings, or the housing wall touching the turbopump. This can produce mechanical loads up to and including destruction of the turbopump.

- ▶ Make sure that all flange and safety connections absorb the resulting forces.
- Secure the vacuum chamber against displacement or tipping.

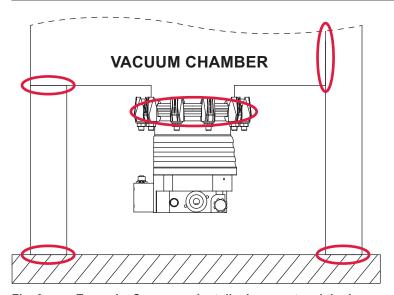


Fig. 3: Example: Secure against displacement and tipping caused by external vibrations

Safety connection, customer-side

5.3.3 Using a splinter shield or protective screen

Pfeiffer Vacuum centering rings with splinter shield or protective screen in the high vacuum flange protect the Turbopump against foreign matter from the vacuum chamber. The pumping speed is reduced according to the passage guide values and the size of the high vacuum flange.

Flange size	Reduced pumping speed in % by gas type			
	H ₂	He	N ₂	Ar
Splinter shield DN 100	5	7	24	24
Protective screen DN 100	2	2	10	8

Tbl. 7: Reduction of the pumping speed when using a splinter shield or protective screen

⁶⁾ The theoretically calculated torque in the event of a burst (rotor shaft breakage) according to ISO 27892 was not reached in any experimental test.

⁷⁾ A one-sided load is not permitted.

Procedure

- ▶ With ISO flanges, use centering rings with protective screen or splinter shield.
- For CF flanges, always insert protective screen or splinter shield with the clamping lugs pointing towards the rotor in the high vacuum flange.

5.3.4 Using the vibration compensator

WARNING

Risk of injury caused by the turbopump breaking away with the vibration compensator in the event of a malfunction

Sudden jamming of the rotor generates high destructive torques in accordance with ISO 27892. When using a vibration compensator, this will probably lead to the turbopump being sheared off in use. The energy that this would release could throw the entire turbopump or shattered pieces from its interior through the surrounding space. Potentially dangerous gases can escape. There is a risk of very serious injuries, including death, and extensive property damage.

- ▶ Take suitable safety precautions on-site for the compensation of the occurring torques.
- ▶ Before installing a vibration compensator, you must first of all contact Pfeiffer Vacuum.

Pfeiffer Vacuum vibration compensators are suitable for use on vibration-sensitive systems.

Installing the vibration compensator

- 1. Install the vibration compensator only with vertical passage.
- 2. Consider the flow resistance.
- 3. Secure the turbopump additionally to the high vacuum flange.
- 4. Observe the fastening of the ISO flanges.

5.3.5 Mounting orientations

Pfeiffer Vacuum turbopumps from the HiPace series are suitable for use with dry compressing backing pumps for mounting in **all** orientations.

When using oil-sealed backing pumps, avoid backflow from the fore-vacuum range.

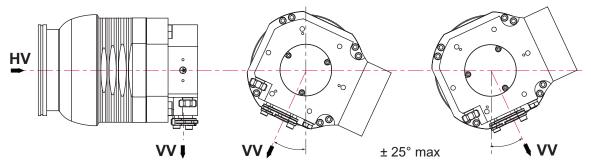


Fig. 4: Recommended alignment of the fore-vacuum connection when using oil-sealed backing pumps

Determine a horizontal mounting orientation of the turbopump with oil-sealed backing pumps

- 1. Always align the fore-vacuum connection downwards vertically.
 - Permissible deviation ± 25°
- 2. Support the tube connections in front of the turbopump.
- 3. Do not allow any forces from the piping system to act on the turbopump.
- 4. Do not load the high vacuum flange of the turbopump on one side.

5.3.6 Attaching ISO-K flange onto ISO-K

ISO flange connections

For the connection of flanges in ISO-KF or ISO-K design, twisting may occur in the event of sudden blockage of the rotor, despite correct installation.

• Leak-tightness of the flange connection, however, is not jeopardized in this regard.

Required tools

- Wrench, WAF 15
- Calibrated torque wrench (Tightening factor ≤ 1.6)

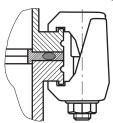


Fig. 5: Flange connection ISO-K to ISO-F, bracket screws

Connection with bracket screw

- 1. For the connection of the turbopump, use only the approved mounting kits from Pfeiffer Vacuum.
- 2. Connect the flange with the components of the mounting kit according to the figure.
- 3. Use for all prescribed components for the turbopump.
- 4. Tighten the bracket screws cross-wise in 3 steps.
 - Tightening torque: 5, 15, 25 ± 2 Nm

5.3.7 Attaching ISO-K flange to ISO-F

The connection types for ISO-K flange installation with ISO-F flange are:

- "Hexagon head screw and tapped hole"
- "Stud screw with tapped hole"
- "Stud screw with through hole"

ISO flange connections

For the connection of flanges in ISO-KF or ISO-K design, twisting may occur in the event of sudden blockage of the rotor, despite correct installation.

• Leak-tightness of the flange connection, however, is not jeopardized in this regard.

Required tools

- Hexagon wrench (15 WAF)
- Calibrated torque wrench (tightening factor ≤ 1.6)

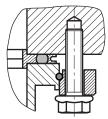


Fig. 6: Flange connection ISO-K to ISO-F, hexagon head screw and tapped hole

Connection of the hexagon head screw and tapped hole

- 1. Only use the approved mounting kits of Pfeiffer Vacuum for the connection of the turbopump.
- 2. Place the collar flange over the high vacuum flange of the turbopump.
- 3. Insert the snap ring in the side groove on the high vacuum flange of the turbopump.
- 4. Attach the turbopump with collar flange, snap ring and centering ring to the counter flange according to the figure.
- 5. Use all prescribed components for the turbopump.
- 6. Screw the hexagon head screws into the tapped holes.
 - Observe the minimum tensile strength of the flange material and the screw depth.
- 7. Fasten the hexagon head screws cross-wise in 3 steps.
 - Tightening torque: 5, 15, 25 ± 2 Nm

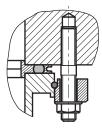


Fig. 7: Flange connection ISO-K to ISO-F, stud screw and tapped hole

Connection of the stud screw and tapped hole

- 1. Only use the approved mounting kits of Pfeiffer Vacuum for the connection of the turbopump.
- Screw in the required number of stud screws with the shorter end in the holes on the counter flange.
 - Observe the minimum tensile strength of the flange material and the screw depth.
- 3. Place the collar flange over the high vacuum flange of the turbopump.
- 4. Insert the snap ring in the side groove on the high vacuum flange of the turbopump.
- 5. Attach the turbopump with collar flange, snap ring and centering ring to the counter flange according to the figure.
- 6. Use all prescribed components for the turbopump.
- 7. Secure the nuts cross-wise in 3 steps.
 - Tightening torque: 5, 15, 25 ± 2 Nm

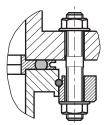


Fig. 8: Flange connection ISO-K to ISO-F, stud screw and through hole

Connection of the stud screw and through hole

- 1. Only use the approved mounting kits of Pfeiffer Vacuum for the connection of the turbopump.
- 2. Place the collar flange over the high vacuum flange of the turbopump.
- 3. Insert the snap ring in the side groove on the high vacuum flange of the turbopump.
- 4. Attach the turbopump with collar flange, snap ring and centering ring to the counter flange according to the figure.
- 5. Use all prescribed components for the turbopump.
- 6. Tighten the nuts cross-wise in 3 steps.
- 7. Tightening torque: 5, 15, 25 ± 2 Nm

5.3.8 Attaching CF flange to CF-F

The connection types for CF installation with CF flange are:

- "Hexagon head screw and through hole"
- "Stud screw with tapped hole"
- "Stud screw with through hole"

NOTICE

Leaks may occur due to the incorrect installation of CF flanges

Inadequate cleanliness when handling CF flanges and copper gaskets results in leaks and may cause process damage.

- ▶ Always wear suitable gloves before touching or fitting any components.
- ► Fit seals only if dry and free of grease.
- Take care of damaged surfaces and cut edges.
- Replace the damaged components.

Required tools

- Hexagonal wrench (13 WAF)
- Calibrated torque wrench (tightening factor ≤ 1.6)

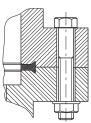


Fig. 9: Flange connection CF-F, hexagon head screw and through hole

Connection of the hexagon head screw and through holes

- 1. For the connection of the turbopump, use only the approved mounting kits from Pfeiffer Vacuum.
- 2. If used: Insert the protective screen or splinter shield with clamping lugs downwards in the turbopump high vacuum flange.
- 3. Place the seal exactly in the hollow.
- 4. Connect the flange with the components of the mounting kit according to the figure.
- 5. Tighten the screw couplings all the way around.
 - Tightening torque: 22 ± 2 Nm
- 6. Then check the torque, since flowing of the sealing material may make it necessary to re-tighten the screws.

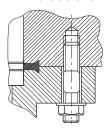


Fig. 10: Flange connection CF-F, stud screw and tapped hole

Connection of the stud screw and tapped hole

- 1. For the connection of the turbopump, use only the approved mounting kits from Pfeiffer Vacuum.
- 2. Screw in the required number of stud screws with the shorter end in the holes on the counter flange.
- 3. If used: Insert the protective screen or splinter shield with clamping lugs downwards in the turbopump high vacuum flange.
- 4. Place the seal exactly in the hollow.
- 5. Connect the flange with the components of the mounting kit according to the figure.
- 6. Tighten the screw couplings all the way around.
 - Tightening torque: 22 ± 2 Nm
- 7. Then check the torque, since flowing of the sealing material may make it necessary to re-tighten the screws.

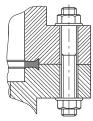


Fig. 11: Flange connection CF-F, stud screw and through hole

Connection of the stud screw and through hole

- 1. For the connection of the turbopump, use only the approved mounting kits from Pfeiffer Vacuum.
- 2. If used: Insert the protective screen or splinter shield with clamping lugs downwards in the turbopump high vacuum flange.

- 3. Place the seal exactly in the hollow.
- 4. Connect the flange with the components of the mounting kit according to the figure.
- 5. Tighten the screw couplings all the way around.
 - Tightening torque: 22 ± 2 Nm
- 6. Then check the torque, since flowing of the sealing material may make it necessary to re-tighten the screws.

5.4 Connect the fore-vacuum side

WARNING

Danger to life from poisoning where toxic process media leak from damaged connections

Sudden twisting of the turbopump in the event of a fault causes fittings to accelerate. There is the risk of damaging on-site connections (e.g., fore-vacuum line) and resulting leaks. This results in leakage of process media. In processes involving toxic media, there is a risk of injury and danger to life due to poisoning.

- ► Keep masses connected to the turbopump as low as possible.
- ▶ Use flexible lines to connect to the turbopump where necessary.

Suitable backing pump

Use the turbopump only in combination with a suitable backing pump that can deliver up to the required maximum fore-vacuum pressure. To achieve the fore-vacuum pressure, use a suitable vacuum pump or a pumping station from the Pfeiffer Vacuum range.

In this case, the backing pump is also controlled directly via the turbopump electronic drive unit interfaces (e.g., relay box or connection cable).

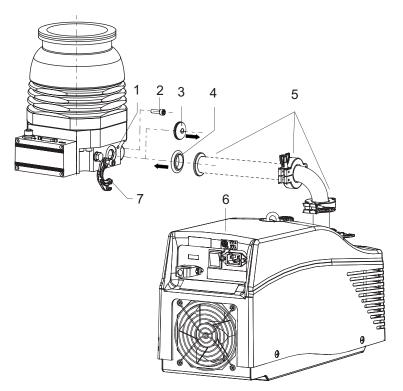


Fig. 12: Example of fore-vacuum connection

- 1 Turbopump fore-vacuum connection
- 2 Cylinder screw3 Blank flange
- 4 Centering ring

- 5 Vacuum components DN 16 ISO-KF
- 6 Backing pump (e.g. multi-stage roots pump)
- 7 Clamp lock

Establish the fore-vacuum connection

Required tools

- Allen key, WAF 5 mm
- Calibrated torque wrench (tightening factor ≤ 1.6)
- Dismantle the blank flange on the fore-vacuum connection and keep the blank flange in a safe place.
- 2. With rigid pipe connections, include bellows to attenuate external vibrations.
- 3. Install a fore-vacuum connection with small flange components, e.g. connection elements and pipe components DN 16 ISO-KF from the <u>Pfeiffer Vacuum range of components</u>.
- 4. Implement measures to counteract the backflow of operating fluids or condensate from the fore-vacuum area.
- 5. Observe the information in the operating instructions of the backup pump or pumping station when connecting and operating it.
- 6. Tighten the cylinder screws on the clamp lock evenly.
 - Tightening torque: 2 Nm.

5.5 Connecting accessories

Installation and operation of accessories

Pfeiffer Vacuum offers a series of special, compatible accessories for its products.

• Information and ordering options for approved <u>accessories for hybrid bearing turbo-</u> <u>pumps</u> can be found online.

Electronic drive unit TC 110 and TC 120 accessory connection

- Use of Pfeiffer Vacuum accessories via the electronic drive unit TC 110 and TC 120 is enabled via a corresponding connection cable or adapter at the X3 multi-function connection.
- The desired accessory output is configured via RS-485 using Pfeiffer Vacuum control units or a PC.
- You can find more detailed information in the electronic drive unit operating instructions.

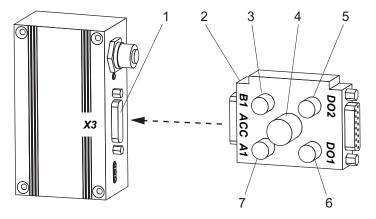


Fig. 13: Example of accessory connection via adapter TCS 12

- 1 Multifunction connection X3
- 2 Adapter TCS
- 3 Accessory connection B1
- Connection RS-485
- 5 Digital output DO2
- 6 Digital output DO1
- 7 Accessory connection A1

Use accessories

- 1. Observe the installation instructions in the operating instructions for the relevant accessory.
- 2. Note the existing configuration of existing connections and control lines.
- 3. If configuration is necessary, use a Pfeiffer Vacuum control unit.

5.6 Connecting the electrical supply

WARNING

Risk of danger to life through missing mains disconnection device

The vacuum pump and electronic drive unit are **not** equipped with a mains disconnection device (mains switch).

- Install a mains disconnection device according to SEMI-S2.
- Install a circuit breaker with an interruption rating of at least 10,000 A.

WARNING

Risk of injury due to incorrect installation

Dangerous situations may arise from unsafe or incorrect installation.

- ▶ Do not carry out your own conversions or modifications on the unit.
- ▶ Ensure the integration into an Emergency Off safety circuit.

5.6.1 Ground the turbopump

Pfeiffer Vacuum recommends connecting a suitable grounding cable to discharge applicative interferences.

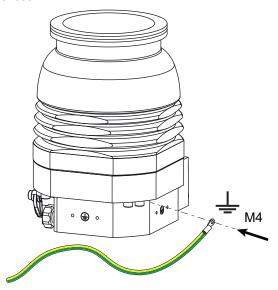


Fig. 14: Example: Connect the grounding cable

- 1. Use the turbopump ground terminal (M4 female thread).
- 2. Route the connection in accordance with locally applicable provisions.

5.6.2 Establishing electric connection

A DANGER

Danger to life from electric shock

Power supply packs that are not specified or are not approved will lead to severe injury to death.

- ▶ Make sure that the power supply pack meets the requirements for double isolation between mains input voltage and output voltage, in accordance with IEC 61010-1 IEC 60950-1 and IEC 62368-1.
- ► Make sure that the power supply pack meets the requirements in accordance with IEC 61010-1 IEC 60950-1 and IEC 62368-1.
- ▶ Where possible, use original power supply packs or only power supply packs that correspond with the applicable safety regulations.

WARNING

Danger of cut injuries from unexpected start up.

The use of mating plugs of the electronic drive unit (accessories) enables the automatic run-up of the vacuum pump as soon the power is turned on. Attaching mating plugs before or during the installation leads to the movement of parts hence the risk of cut injuries by sharp-edged in the exposed high vacuum flange.

- ▶ Only connect mating plugs after the mechanical installation.
- ▶ Only switch on the vacuum pump immediately prior to operation.

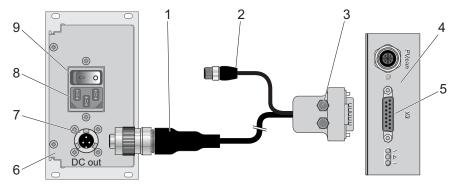


Fig. 15: Connecting electronic drive unit to power supply pack

- 1 Connection cable
- 2 RS 485 connector (optional)
- 3 Accessory connector (optional)
- 4 Turbopump electronic drive unit
- 5 Multifunction connection X3
- 6 Power supply pack | Control unit with power supply pack
- 7 DCout connector
- 8 Mains connection ACin
- 9 Main switch

Original power supply packs (e.g. TPS) or control units and connection cables are available for the electronic drive unit supply voltage.

Connection cable type	Function
Connection cable with RS-485 interface and bridges from TC 110 TC 120 to power supply pack	 Voltage supply via power supply pack Automatic ramp-up with bridges on pins 2, 5, 7 Connection to control unit via RS-485
Connection cable with RS-485 interface and accessory connectors from TC 110 TC 120 to power supply pack	 Voltage supply via power supply pack Connector for accessory units with M8 plug Connection to control unit via RS-485
Connection cable with bridges from TC 110 TC 120 to power supply pack	 Voltage supply via power supply pack Automatic ramp-up with bridges on pins 2, 5, 7
Connection cable with bridges and accessory connectors from TC 110 TC 120 to power supply pack	 Voltage supply via power supply pack Automatic ramp-up with bridges on pins 2, 5, 7 Connector for accessory units with M8 plug

Connecting electronic drive unit

- 1. Ensure the correct supply voltage.
- 2. Make sure that the power supply pack main switch is off prior to connection.
- 3. Use a suitable connection cable from the Pfeiffer Vacuum accessories range.
- 4. Plug the 15-pole connection cable plug into the "X3" connection on the electronic drive unit and secure it.
- Insert the connecting cable into the connection "DCout" on the power supply pack and close the bayonet lock.
- 6. **If you are using a Pfeiffer Vacuum control unit:** Connect the "RS-485" connector to the control unit using a suitable extension cable.

6 Operation

6.1 Commissioning

WARNING

Danger of cut injuries from unexpected start up.

The use of mating plugs of the electronic drive unit (accessories) enables the automatic run-up of the vacuum pump as soon the power is turned on. Attaching mating plugs before or during the installation leads to the movement of parts hence the risk of cut injuries by sharp-edged in the exposed high vacuum flange.

- Only connect mating plugs after the mechanical installation.
- Only switch on the vacuum pump immediately prior to operation.

NOTICE

Vacuum pump destruction due to excessive energy input during operation

Simultaneous loading by means of high drive power (gas throughput, fore-vacuum pressure), high heat radiation, or strong magnetic fields results in uncontrolled heating of the rotor and can destroy the vacuum pump.

Consult Pfeiffer Vacuum before combining varying loads on the vacuum pump. Lower limit values apply.

NOTICE

Turbopump destruction due to gases with too high molecular masses

The pumping of gases with impermissible high molecular masses leads to the destruction of the turbopump.

- ▶ Make sure that the gas mode is set correctly by [P:027] in the electronic drive unit.
- ► Consult Pfeiffer Vacuum before you use gases with higher molecular masses (> 80).

Important settings and function-related variables are programmed ex factory as parameters in the vacuum pump electronic drive unit. Each parameter has a three-digit number and a description. Parameter-driven operation and control is supported via a Pfeiffer Vacuum control unit, or externally via RS-485 using Pfeiffer Vacuum protocol.

Parameter	Name	Designation	Adjustment, setting
[P:027]	GasMode	Gas mode	0 = heavy gases
[P:035]	CfgAccA1	Accessory connection A1	0 = fan (continuous operation)
[P:036]	CfgAccB1	Accessory connection B1	1 = venting valve
[P:700]	RUTimeSVal	Set value run-up time	8 min.
[P:701]	SpdSwPt1	Rotation speed switch point 1	80 %
[P:707]	SpdSVal	Speed-control operation specification	65 %
[P:708]	PwrSVal	Set value power consumption	100 %
[P:720]	VentSpd	Venting at rotation speed, delayed venting	50 %
[P:721]	VentTime	Venting time, delayed venting	3600 s

Tbl. 8: Factory setting of the electronic drive unit for turbopumps when delivered

Notes for turbopump commissioning

- 1. When using water cooling, observe the cooling water flow and throughput.
- 2. When using sealing gas, observe the sealing gas flow and throughput.
- 3. Provide the current supply for the power supply pack.

6.2 Operating modes

The turbopump can be operated in different modes.

- · Operating without control unit
- Operation via connection "X3"
- Operating via RS-485 interface from Pfeiffer Vacuum control unit or PC
- Operation via connection "E74"
- Operation via field bus

6.2.1 Operation without operating unit

Automatic start

After bypassing the contacts at pins 2, 5 and 7 on the "X3" connection or when using a connection cable with bridges and applying the supply voltage, the turbopump starts up immediately.

Notes on operation without control unit

- 1. Only use the approved Pfeiffer Vacuum connection cables with bridges on the "X3" connection on the electronic drive unit.
- 2. Only switch on the power supply of the turbopump immediately before operation.

After applying the operating voltage, the electronic drive unit carries out a self-test to check the supply voltage. After completing the self-test successfully, the turbopump starts and activates connected additional equipment according to the configuration.

6.2.2 Operation via multi-function connection "X3"

Remote control is available via the 15 Pole D-Sub connection with the "X3" designation on the electronic drive unit. The accessible individual functions are mapped to "PLC levels".

Instructions for remote control operation

▶ See the electronic drive unit operating instructions.

6.2.3 Operation via connection "E74"

Operation is possible via the 15-pole D-sub connection with the "E74" designation on the electronic drive unit. Besides the signals defined in the Directive SEMI E74-0301, the connection is provided with an inverted alarm signal and an analog output.

Instructions for operation with E74

▶ See the operating instructions of the electronic drive unit with E74 version.

6.2.4 Operation via Pfeiffer Vacuum control unit

Connecting a Pfeiffer Vacuum control unit allows the turbopump to be controlled via static parameters stored in the electronic drive unit.

Using control unit

- 1. Observe the appropriate operating instructions for handling Pfeiffer Vacuum control units:
 - Operating instructions available from the <u>Download Center</u>.
- Observe the electronic drive unit operating instructions from the scope of delivery of the vacuum pump.
- 3. Connect the control unit to the "X3" multi-function connection of the electronic drive unit.
 - Use a suitable connection cable with "RS-485" connection or an adapter for "X3".
- 4. Switch on the turbopump power supply via the external power supply pack or the control unit with integrated power supply pack.

6.2.5 Operation via field bus

Integrating and operating Pfeiffer Vacuum turbopumps in the customer's field bus system is possible when using an electronic drive unit with a corresponding connection panel.

The following are available:

Profibus

Instructions for field bus operation

See the operating manual of the electronic drive unit with corresponding connection panel.

6.3 Switching on the turbopump

WARNING

Risk of burns on hot surfaces when using additional equipment for heating during operation

The use of additional equipment for heating the vacuum pump or for optimizing the process generates very high temperatures on surfaces that can be touched. There is a risk of burning.

- ▶ If necessary, set up a contact guard.
- ▶ If necessary, apply the warning stickers provided for this at the danger points.
- Ensure adequate cooling down before working on the vacuum pump or in its vicinity.
- ► Wear protective equipment, e.g., gloves.

WARNING

Risk of serious injury in the event of vacuum pump destruction due to over pressure

Gas entry with very high over pressure results in destruction of the vacuum pump. There is a risk of serious injury due to ejected objects.

- ▶ Never exceed the permissible 1500 hPa (absolute) inlet pressure on the suction side or the venting and sealing gas connection.
- ▶ Make sure that high, process-related over pressures cannot directly enter the vacuum pump.

Switching on the turbopump

- Connect the power supply pack to the mains power supply on the customer-side.
- Switch on the power supply pack.

6.4 Operation monitoring

6.4.1 Operating mode display via LED

LEDs on the electronic drive unit show the basic operating states of the vacuum pump. A differentiated error and warning display is only possible for operation with the Pfeiffer Vacuum control unit or a PC.

LED	Symbol	LED status	Display	Meaning
		Off		Currentless
Green		On, flashing		"pumping station OFF", rotation speed ≤ 60 rpm
Gleen		On, inverse flashing		"pumping station ON", set rotation speed not reached
		On, constant		"pumping station ON", set rotation speed reached
		On, flashing		"pumping station OFF", speed > 60 rpm
Yellow	A	Off		No warning
	Δ	On, constant		Warning
Red	•	Off		No error, no warning
• 1		On, constant		Error, malfunction

Tbl. 9: Behavior and meaning of the LEDs on the electronic drive unit

6.4.2 Temperature monitoring

If threshold values are exceeded, output signals from temperature sensors bring the turbopump to a safe condition. Depending on the type, temperature thresholds for warning and error messages are im-

mutably stored in the electronic drive unit. For information purposes, various status requests are set up in the parameter set.

- In order to avoid switching off the turbopump, the electronic drive unit already reduces the power consumption in case of exceeding the warning threshold for excess temperature.
 - Examples are an impermissible motor temperature, or impermissibly high housing temperature.
- Further reduction of drive power and thus decreasing speed can potentially lead to underrun the rotation speed switchpoint. The turbopump switches off.
- Exceeding the temperature threshold for error messages switches off the turbopump immediately.

6.5 Switching off and venting

We recommend

Vent the turbopump after shutdown. By doing so, you prevent particles flowing back into the vacuum system from the fore-vacuum area.

6.5.1 Switching off

Notes for switching off the turbopump

- 1. Shut down the turbopump via the control unit or remote control.
- 2. Close the fore-vacuum line.
- 3. Switch off the backing pump, if necessary.
- 4. Vent the turbopump.
- 5. Close the supply lines (e.g. for cooling water or sealing gas).

6.5.2 Venting

A CAUTION

Risk of injuries due to contact with vacuum when venting

While venting the vacuum pump there is a risk of minor injuries due to the direct contact of body parts with the vacuum, e.g. hematomas.

- ▶ Do not fully unscrew the venting screw out of the housing during venting.
- Keep a distance from automatic venting device, such as venting valves.

NOTICE

Damage to the turbopump due to non-permissibly fast pressure rise during venting

Non-permissibly high pressure rise rates place a significant load on the rotor and the magnetic bearing of the turbopump. During venting very small volumes in the vacuum chamber or the turbopump, there is a risk of uncontrollable pressure rises. This causes mechanical damage to the turbopump, including potential failure.

- ▶ Observe the prescribed maximum pressure rise speed of 15 hPa/s.
- Avoid manual and uncontrolled venting of very low volumes.
- Where necessary, use a venting valve from the Pfeiffer Vacuum range of accessories.

Manual venting

Manual venting describes the standard process for venting the turbo pumping station.

- 1. Ensure that the vacuum system is shut down.
- 2. Open the black venting screw on the turbopump by one revolution maximum.
- 3. Wait for pressure equalization to atmospheric pressure in the vacuum system.
- 4. Close the venting screw again.

Use a Pfeiffer Vacuum venting valve

The Pfeiffer Vacuum venting valve is an optional accessory for installation on the turbopump.

The venting valve is normally closed. Control is via the turbopump electronic drive unit, and configuration of parameters [P:012] and [P:030]. In the event of a power failure, the turbopump continues to de-

liver sufficient energy during its run-down period to initiate a proper venting process. When power is restored, the venting process is interrupted.

- ► Switch off the turbopump.
 - The venting process starts automatically.

Venting speed [P:720]	Venting duration [P:721]	Venting duration in the event of a power failure	
50 % of rated speed	3600 s	3600 s	

Tbl. 10: Factory settings for delayed venting in turbopumps

General information for fast venting

We recommend fast venting of larger volumes in 4 steps.

- 1. Use a Pfeiffer Vacuum venting valve for the turbopump, or match the valve cross-section to the size of the recipient and maximum venting rate.
- 2. Vent the vacuum system with a maximum rate of pressure rise of **15 hPa/s** for a duration of 20 seconds
- 3. Then vent the system with a second venting valve of any size; for example, directly at the vacuum chamber.
- 4. Wait for pressure equalization to atmospheric pressure in the vacuum system.

7 Maintenance

7.1 General maintenance information

WARNING

Danger to life from electric shock during maintenance and service work

The device is only completely de-energized when the mains plug has been disconnected and the turbopump is at a standstill. There is a danger to life from electric shock when making contact with live components.

- ▶ Before performing all work, switch off the main switch.
- ► Wait until the turbopump comes to a standstill (rotation speed f = 0).
- ▶ Remove the mains plug from the device.
- Secure the device against unintentional restarting.

WARNING

Health hazard through poisoning from toxic contaminated components or devices

Toxic process media result in contamination of devices or parts of them. During maintenance work, there is a risk to health from contact with these poisonous substances. Illegal disposal of toxic substances causes environmental damage.

- Take suitable safety precautions and prevent health hazards or environmental pollution by toxic process media.
- ▶ Decontaminate affected parts before carrying out maintenance work.
- ► Wear protective equipment.

WARNING

Risk of cuts on moving, sharp-edged parts when reaching into the open high vacuum connection

Incorrect handling of the turbopump before maintenance work results in hazardous situations with risk of injury. There is a risk of cuts from accessing sharp-edged, rotating parts when removing the turbopump.

- ightharpoonup Wait until the turbopump comes to a standstill (rotation speed f = 0).
- Switch the turbopump off properly.
- Secure the turbopump against re-start.
- Seal open connections immediately following removal, using the original protective cover.

7.2 Checklist for inspection and maintenance

Maintenance frequency and service lives

Maintenance frequency and service lives are process-dependent. Chemical and thermic loads or contamination reduce the recommended reference values.

- Determine the specific service lives during the first operating interval.
- Consult with Pfeiffer Vacuum Service if you wish to reduce the maintenance frequency.

Maintenance Level 2 and Level 3

We recommend Pfeiffer Vacuum Service (PV) carry out maintenance work at Level 2 and Level 3 (inspection). If the specified intervals are exceeded, or if maintenance work is carried out improperly, no warranty or liability claims are accepted on the part of Pfeiffer Vacuum. This also applies wherever parts other than original spare parts are used.

Recommendations for performing maintenance measures

- ► You can carry out maintenance work at **Level 1** yourself.
- ▶ Utilize a lint-free cloth and a little isopropanol for cleaning.

- ▶ Pay attention to when the operating fluid must be changed.
- ► For any questions relating to maintenance, contact the appropriate Pfeiffer Vacuum Service location

Action	Inspection	Mainte- nance lev- el 1	Mainte- nance lev- el 2	Mainte- nance lev- el 3	Required ma- terial
Described in document	OI	OI/MM	ММ	SI	
Interval	If required	≤ 5 years	≤ 5 years	≤ 5 years	
Inspection					
Visual and acoustic check	•				
Read out and analyze pump data ⁸⁾	•				
Optional software update ⁹⁾					
Prepare a recommendation for action 10)					
Maintenance level 1 - Rep	lacing the op	erating fluid ı	reservoir		
Clean the outside of the vacuum pump, clean the bottom part,					Operating fluid reservoir
Replace the operating fluid reservoir,					
Function test					
Maintenance level 2 - Rep	lacing releva	nt wear parts			
Clean the outside of the vacuum pump, clean the bottom part,					Spare parts package 1 – bearing
Partially disassemble the vacuum pump,					
Replace the operating fluid reservoir,					
Replace the bearing housing, Function test					
Maintenance level 3 – Ove	∟ rhaul				
Dismantle and clean the vacuum pump,					Spare parts package 1 –
Replace all seals and wear parts,					bearing Set of seals
Function test					

Tbl. 11: Maintenance intervals

7.3 Replacing operating fluid reservoir

WARNING

Risk of poisoning from contact with harmful substances

The operating fluid reservoir and parts of the turbopump may contain toxic substances from pumped media.

- ▶ Decontaminate affected parts before carrying out maintenance work.
- ▶ Prevent health hazards or environmental impacts with adequate safety precautions.
- Observe the operating fluid safety data sheet.
- ▶ Dispose of the operating fluid reservoir according to applicable regulations.

100/124

⁸⁾ For maintenance by Pfeiffer Vacuum Service.

⁹⁾ For maintenance by Pfeiffer Vacuum Service.

¹⁰⁾ For maintenance by Pfeiffer Vacuum Service.

NOTICE

Damage to sealing surfaces from unsuitable tools

The use of unsuitable tools for removal or insertion of sealing rings damages the sealing surfaces, causing vacuum pump leakage.

- ► Never use sharp, metallic tools (e.g. tweezers).
- Only remove sealing rings with an O-ring picker.

Replacing the operating fluid reservoir

Depending on its design, the turbopump's operating fluid reservoir may feature capillary rods.

- When ordering spare parts, make sure you use the correct pump article number and the operating fluid reservoir.
- This information can be found on the pump rating plate.

Scan this qr code or click here and see the service level 1, replacing operating fluid reservoir.

You can find the safety data sheet in the Pfeiffer Vacuum Download Center.

Prerequisites

- Turbopump off
- Vacuum system vented to atmospheric pressure
- Electrical supply disconnected
- All cables disconnected
- All openings sealed with the original protective covers and any plugs

7.3.1 Remove the operating fluid reservoir

Required consumables

- Clean, lint-free cloth
- Laboratory gloves

Required tools

- Allen key, WAF 3
- Tweezers
- · O-ring picker

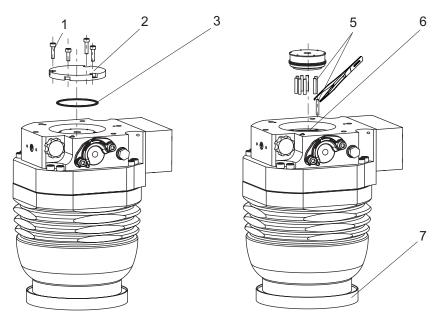


Fig. 16: Remove the operating fluid reservoir

- Interior hexagon socket screw
- Screw cap
- 3 O-ring
- Operating fluid reservoir
- Capillary rods (9×) Injection tip
- Protective cap

Remove the operating fluid reservoir

- 1. Wear laboratory gloves to avoid skin contact.
- 2. Place the turbopump on the closed high vacuum flange.
- 3. Unscrew all Allen head screws from the screw cap on the pump bottom part.
- 4. Remove the screw cap.
- 5. Remove the O-ring from the groove using an O-ring picker.
 - Avoid damage caused by scratches.
- 6. Remove the operating fluid reservoir from the bearing housing using the tweezers.
- 7. Pull the old capillary rods out of the pump bottom part with the tweezers.
- 8. Clean the screw cap with a clean, lint-free cloth.
 - Do not use cleaning agents.

7.3.2 Assemble the operating fluid reservoir

Required consumables

- Laboratory gloves
- Operating fluid reservoir

Required tools

- Allen key, WAF 3
- **Tweezers**
- Calibrated torque wrench (tightening factor ≤ 1.6)

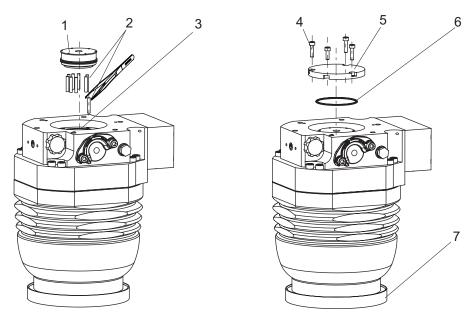


Fig. 17: Assemble the operating fluid reservoir

- 1 Operating fluid reservoir
- 2 Capillary rods (9×)
- 3 Injection tip
- 4 Interior hexagon socket screw
- 5 Screw cap
- 6 O-ring
- 7 Protective cap

Assemble the operating fluid reservoir

- 1. Wear laboratory gloves to avoid skin contact.
- 2. Insert all new capillary rods with the tweezers.
- 3. Insert the operating fluid reservoir into the bearing housing with the felt side in the direction of the injection tip.
 - When doing so, do not exert pressure on the operating fluid reservoir.
- 4. Insert the O-ring in the groove in the pump bottom part.
- 5. Fit the screw cap.
- 6. Tighten all 3 Allen head screws uniformly.
 - Tightening torque: 2.5 Nm.

7.4 Replacing the electronic drive unit

NOTICE

Damage to the vacuum pump and electronic drive unit due to improper disconnection of components

Even after the power supply has been switched off, the vacuum pump continues to deliver electrical energy during its run-down period. If the vacuum pump and electronic drive unit are disconnected prematurely, there is the risk of body contact and consequently the destruction of electronic components.

- Never disconnect the vacuum pump and electronic drive unit from each other if power is still connected or if the rotor is running.
- ▶ Monitor the rotation speed via the parameters available in the electronic drive unit (e.g. [P:398]).
- ► Wait until the vacuum pump comes to a standstill (rotation speed f = 0).

NOTICE

Property damage from electrostatic discharge

Neglecting the electrostatic hazard for electronic components results in their damage or destruction

- ▶ Implement ESD safety measures at the workstation.
- ▶ Observe EN 61340 "Protection of electronic devices from electrostatic phenomena".

Backing up settings made by the customer

The factory operating parameters are always preset in replacement units. All settings made by the customer to the original electronic drive unit are lost when it is replaced. To preserve your custom settings, you have the following options:

- 1. Back up all your settings as a parameter set in an HPU.
- 2. Load a backup parameter set by means of HPU into the new electronic drive unit.
- 3. Program the individual settings into the new electronic drive unit by hand.
- 4. See the operating instructions of the electronic drive unit and the HPU.

The electronic drive unit of the turbopump cannot be repaired. In the event of a defect, replace the entire electronic drive unit with a replacement part.

Prerequisites

- Turbopump off
- Turbopump cooled.
- Vacuum system vented to atmospheric pressure.
- Electrical supply disconnected.
- All cables disconnected from the electronic drive unit.
- All openings sealed with the original protective covers, and any screw plugs.

7.4.1 Dismantle the electronic drive unit

Required tools

- Torx screwdriver TX 10
- Calibrated torque wrench (tightening factor ≤ 1.6)

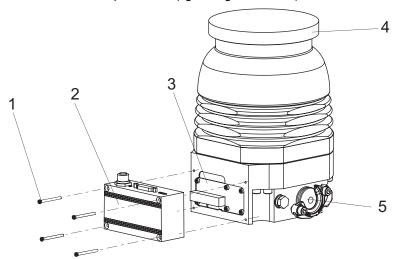


Fig. 18: Removal of electronic drive unit TC 110|TC 120

- 1 Torx screw
- 2 Electronic drive unit
- 3 Adapter plate
- 4 Original protective cover
- 5 Blank flange

Procedure

- 1. Install the turbopump upright if required.
- 2. Unscrew all 4 Torx screws from the electronic drive unit.
- 3. Pull the old electronic drive unit off the turbopump, taking care to keep it straight.
- 4. Place a new electronic drive unit straight onto the adapter plate connection of the turbopump.
- 5. Screw the electronic drive unit to the turbopump with all 4 Torx screws.
 - Tightening torque: 0.8 Nm

7.4.2 Installing electronic drive unit

Required tools

- Torx screwdriver TX 10
- Calibrated torque wrench (tightening factor ≤ 1.6)

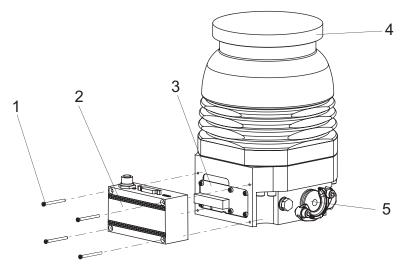


Fig. 19: Installation of electronic drive unit TC 110|TC 120

- 1 Torx screw
- 2 Electronic drive unit
- 3 Adapter plate
- 4 Original protective cover
- 5 Blank flange

Procedure

- 1. Install the turbopump upright if required.
- 2. Position the new electronic drive unit straight on the adapter plate connection of the turbopump.
- 3. Screw the electronic drive unit to the turbopump with all 4 Torx screws.
 - Tightening torque: 0.8 Nm

7.4.3 Confirming speed specification

The typical nominal rotation speed of a turbopump is preset ex factory in the electronic drive unit. If the electronic drive unit is replaced or a different pump type is used, the set value settings of the nominal rotation speed is cleared. The manual confirmation of the nominal rotation speed is part of a redundant safety system as a measure for preventing excess rotation speed.

The redundant confirmation of the nominal rotation speed of a turbopump is possible by adjusting the **[P:777] NomSpdConf** parameter in the electronic drive unit.

HiPace	Nominal rotation speed	
10 30 60 80	1500 Hz	
300	1000 Hz	
350 450	1100 Hz	
400 700 800	820 Hz	

Tbl. 12: Characteristic nominal rotation speeds of the turbopumps

Required aids

- Connected Pfeiffer Vacuum control unit
- Knowledge of the configuration and setting of electronic drive unit operating parameters

Adjusting nominal rotation speed confirmation

- 1. Observe the operating instructions of the control unit.
- 2. See the electronic drive unit operating instructions.
- 3. Set the parameter [P:794] to "1" and activate the expanded parameter set.
- 4. Open and edit the parameter [P:777].
- 5. Set the parameter [P:777] to the required value of the nominal rotation speed in Hertz.

Alternative to adjusting the nominal rotation speed confirmation

A Pfeiffer Vacuum SpeedConfigurator for the one-time immediate setting of parameter **[P:777]** is included with the replacement units.

Decommissioning 8

8.1 Shutting down for longer periods

WARNING

Health hazard through poisoning from toxic contaminated components or devices

Toxic process media result in contamination of devices or parts of them. During maintenance work, there is a risk to health from contact with these poisonous substances. Illegal disposal of toxic substances causes environmental damage.

- ► Take suitable safety precautions and prevent health hazards or environmental pollution by toxic process media.
- Decontaminate affected parts before carrying out maintenance work.
- ▶ Wear protective equipment.

Procedure for a longer downtime of the turbopump (> 1 year)

- 1. Remove the turbopump from the vacuum system if necessary.
- 2. Change the operating fluid reservoir of the turbopump if necessary.
- 3. Close the high vacuum flange of the turbopump.
- 4. Evacuate the turbopump via the fore-vacuum connection.
- 5. Vent the turbopump via the venting connection with dry, oil-free air or inert gas.
- 6. Seal all flange openings with the original protective caps.
- 7. Store the turbopump upright with the high vacuum flange upwards.
- 8. Store the turbopump indoors only, within the specified temperature range.
- 9. In rooms with humid or aggressive atmospheres: Hermetically seal the turbopump together with a drying agent in a plastic bag.

8.2 Recommissioning

NOTICE

Risk of damage to the turbopump as a result of operating fluid aging after recommissioning

The shelf life of the operating fluid of the turbopump is limited. Aging of the operating fluid may lead to the failure of the ball bearing and cause damage to the turbopump.

- Pay attention to when the operating fluid must be changed:
 - after maximum 2 years without operation,
 - after maximum 5 years combined operation and downtimes.
- Observe the maintenance instructions and inform Pfeiffer Vacuum Service.

Procedures for recommissioning the turbopump

- 1. Check the turbopump for pollution and moisture.
- 2. Clean the turbopump exterior with a lint-free cloth and a little isopropanol.
- 3. If necessary, arrange for Pfeiffer Vacuum Service to completely clean the turbopump.
- 4. Observe the total running time of the turbopump and if necessary, arrange for Pfeiffer Vacuum Service to replace the bearing.
- 5. Change the operating fluid reservoir of the turbopump.
- 6. Install the turbopump according to these instructions (see chapter "Installation", page 83).
- 7. Recommission the turbopump according to these instructions (see chapter "Commissioning", page 94).

Recycling and disposal

WARNING

Health hazard through poisoning from toxic contaminated components or devices

Toxic process media result in contamination of devices or parts of them. During maintenance work, there is a risk to health from contact with these poisonous substances. Illegal disposal of toxic substances causes environmental damage.

- ► Take suitable safety precautions and prevent health hazards or environmental pollution by toxic process media.
- Decontaminate affected parts before carrying out maintenance work.
- Wear protective equipment.

Environmental protection

You must dispose of the product and its components in accordance with all applicable regulations for protecting people, the environment and nature.

- Help to reduce the wastage of natural resources.
- Prevent contamination.

9.1 **General disposal information**

Pfeiffer Vacuum products contain materials that you must recycle.

- Dispose of our products according to the following:

 - Aluminium
 - Copper
 - Synthetic
 - Electronic components
 - Oil and fat, solvent-free
- Observe the special precautionary measures when disposing of:
 - Fluoroelastomers (FKM)
 - Potentially contaminated components that come into contact with media

Dispose of turbopumps 9.2

Pfeiffer Vacuum turbopumps contain materials that you must recycle.

- 1. Remove the complete operating fluid reservoir.
- 2. Remove the electronic drive unit.
- 3. Decontaminate components that come into contact with process gases.
- 4. Separate the components into recyclable materials.
- 5. Recycle the non-contaminated components.
- 6. Dispose of the product or components in a safe manner according to locally applicable regulations.

Malfunctions 10

WARNING

Danger to life from poisoning where toxic process media leak from damaged connections

Sudden twisting of the turbopump in the event of a fault causes fittings to accelerate. There is the risk of damaging on-site connections (e.g., fore-vacuum line) and resulting leaks. This results in leakage of process media. In processes involving toxic media, there is a risk of injury and danger to life due to poisoning.

- Keep masses connected to the turbopump as low as possible.
- ▶ Use flexible lines to connect to the turbopump where necessary.

WARNING

Danger to life from the turbopump breaking away in the event of a fault

Sudden jamming of the rotor generates high destructive torques in accordance with ISO 27892. If the turbopump is **not** properly secured, it can shear off. The energy that this would release could throw the entire turbopump or shattered pieces from its interior through the surrounding space. Potentially dangerous gases can escape. There is a risk of very serious injuries, including death, and extensive property damage.

- ► Follow the installation instructions for this turbopump.
- Observe the requirements regarding stability and design of the counter flange.
- Use only original accessories or fixing material approved by Pfeiffer Vacuum for the installation.

WARNING

Risk of injury caused by the turbopump breaking away with the vibration compensator in the event of a malfunction

Sudden jamming of the rotor generates high destructive torques in accordance with ISO 27892. When using a vibration compensator, this will probably lead to the turbopump being sheared off in use. The energy that this would release could throw the entire turbopump or shattered pieces from its interior through the surrounding space. Potentially dangerous gases can escape. There is a risk of very serious injuries, including death, and extensive property damage.

- Take suitable safety precautions on-site for the compensation of the occurring torques.
- Before installing a vibration compensator, you must first of all contact Pfeiffer Vacuum.

Should malfunctions occur, you can find information about potential causes and how to fix them here. The operating instructions of the associated electronic drive unit contains more detailed error descriptions.

Problem	Possible causes	Remedy
Turbopump will not start up; none of the built-in LEDs on the electronic drive unit light up	Current supply interrupted	 Check the plug contacts on the power supply pack. Check the current supply lines. Check the output voltage at the power supply pack "DC out" connection. Depending on the version of the power supply pack, 24 V DC or 48 V DC are present.
	 Incorrect operating voltage 	Observe the electronic drive unit rating plate.Supply the correct operating voltage.
	No operating voltage present	Supply the correct operating voltage.Switch on the power supply pack.
	Electronic drive unit de- fective	Replace the electronic drive unit.Contact Pfeiffer Vacuum Service.

Turbopump will not start up; green LED on the electronic drive unit is flashing	For operation without control unit: Pins 2-7 and 5-7 on the "X3" con- nection are not connect- ed	 Connect the connections according to the electronic drive unit connection diagram. Check the bridges on the connection cable.
	For operation via RS-485: The bridge be- tween pins 5 and 7 in- hibits control commands	 Remove the bridge from the "X3" connection. Check the connection cable.
	For operation via RS-485: Parameters not set in the electronic drive unit	Set the parameters [P: 010] and [P: 023] via the interface RS-485 to 1 = "ON".
	Voltage drop in the ca- ble is too high	Check the connection cable.Use a suitable connection cable.
Turbopump fails to reach the nominal rotation speed within the set run-up time	Fore-vacuum pressure too high	 Check backup pump compatibility (see technical data). Check that the backup pump is working.
·	Leakage on the turbo- pump	 Carry out leak detection. Check seals and flange connections. Eliminate leaks.
	Gas throughput too high	Reduce the process gas load.
	Rotor not running smoothly, defective bearing	 Check the turbopump for noise development Contact Pfeiffer Vacuum Service.
	 Run-up time setpoint adjusted too low 	 Use a control unit to extend the set value run-up time [P:700].
	Thermal load due to: lack of ventilation water flow too low Fore-vacuum pressure too high ambient temperature too high	 Reduce the thermal load. Ensure adequate air supply. Adjust the cooling water flow. Reduce the fore-vacuum pressure. Adapt the ambient conditions.
Turbopump not achieving the ultimate pressure	Turbopump is polluted	 Heat the turbopump if required. Have it cleaned. Contact Pfeiffer Vacuum Service.
	Vacuum chamber, pipes or turbopump leaking	 Carry out leak detection starting from the vacuum chamber. Check seals and flange connections. Eliminate leaks in the vacuum system.
Unusual noises during operation	Rotor bearing damaged	Contact Pfeiffer Vacuum Service.
	Rotor damaged	Contact Pfeiffer Vacuum Service.
	Splinter shield or protective screen loose	 Check and correct the seat of the splinter shield or protective screen in the high vacuum flange. Follow the installation instructions.
Red LED on the electronic drive unit illuminates	Group error	 Reset the malfunction by switching the current supply off and on. Reset the malfunction with V+ on pin 6 on the "X3" connection. Set the parameter [P: 009] via the interface RS-485 to 1 = Malfunction acknowledgment. Set the parameter [P: 010] via the interface RS-485 to 0 = off and then 1 = On and Malfunction acknowledgment. Carry out a differentiated malfunction analysis with a control unit. Contact Pfeiffer Vacuum Service.

Tbl. 13: Troubleshooting turbopumps

11 Service solutions by Pfeiffer Vacuum

We offer first-class service

High vacuum component service life, in combination with low downtime, are clear expectations that you place on us. We meet your needs with efficient products and outstanding service.

We are always focused on perfecting our core competence – servicing of vacuum components. Once you have purchased a product from Pfeiffer Vacuum, our service is far from over. This is often exactly where service begins. Obviously, in proven Pfeiffer Vacuum quality.

Our professional sales and service employees are available to provide you with reliable assistance, worldwide. Pfeiffer Vacuum offers an entire range of services, from original replacement parts to service contracts.

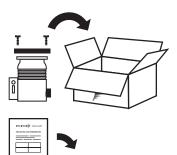
Make use of Pfeiffer Vacuum service

Whether preventive, on-site service carried out by our field service, fast replacement with mint condition replacement products, or repair carried out in a Service Center near you - you have various options for maintaining your equipment availability. You can find more detailed information and addresses on our homepage, in the Pfeiffer Vacuum Service section.

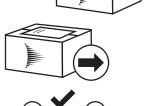
You can obtain advice on the optimal solution for you, from your Pfeiffer Vacuum representa-

For fast and smooth service process handling, we recommend the following:

- 1. Download the up-to-date form templates.
 - Explanations of service requests
 - Service requests
 - Contamination declaration
- a) Remove and store all accessories (all external parts, such as valves, protective screens, etc.).
- If necessary, drain operating fluid/lubricant.
- c) If necessary, drain coolant.
- 2. Complete the service request and contamination declaration.



- 3. Send the forms by email, fax, or post to your local Service Center.


4. You will receive an acknowledgment from Pfeiffer Vacuum.

Submission of contaminated products

No microbiological, explosive, or radiologically contaminated products will be accepted. Where products are contaminated, or the contamination declaration is missing, Pfeiffer Vacuum will contact you before starting service work. Depending on the product and degree of pollution, additional decontamination costs may be incurred.

- Prepare the product for transport in accordance with the provisions in the contamination declaration.
- a) b)
- Neutralize the product with nitrogen or dry air.
 Seal all openings with blind flanges, so that they are airtight.
- c) Shrink-wrap the product in suitable protective foil.d) Package the product in suitable, stable transport containers only.
- e) Maintain applicable transport conditions.
- 6. Attach the contamination declaration to the outside of the packag-

7. Now send your product to your local Service Center.

8. You will receive an acknowledgment/quotation, from Pfeiffer Vac-

PFEIFFER

VACUUM

Our sales and delivery conditions and repair and maintenance conditions for vacuum devices and components apply to all service orders.

Spare parts HiPace 350 12

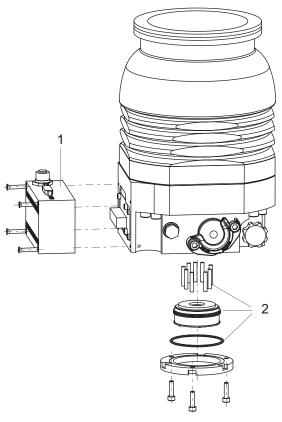


Fig. 20: Spare parts HiPace 350

Position	Designation	Part number	Remark	Pieces
1	Electronic drive unit TC 110 TC 120	refer to the rating plate	depending on the con- nection panel	1
2	Operating fluid reservoir	refer to the rating plate	incl. Poroplast rods and O-ring	1

Tbl. 14: Available spare parts

13 Accessories

View the <u>range of accessories for hybrid bearing turbopumps</u> on our website.

13.1 Accessory information

Fixing materials

Type-specific assembled packages, with centering ring and seal, ensure the secure fastening of the vacuum pump. Optionally with splinter shield or protective screen.

Power supply packs and control units

Power supply packs for optimal voltage supply of Pfeiffer Vacuum products are characterized by their compact size and adapted power supply with maximum reliability. Control units are used to check and adjust operating parameters.

Cable and adapter

Mains, interface, connection, and extension cables provide a secure and suitable connection. Different lengths on request

Venting accessories

A Pfeiffer Vacuum venting valve offers maximum operating and process security. Automatic control through the integrated electronic drive unit of the turbopump.

Sealing gas supply

Sealing gas is used to protect the vacuum pump from dusty and corrosive processes, or excessive gas throughputs. Sealing gas prevents the ingress of damaging substances into the motor and bearing area. The supply is carried out either via a sealing gas valve or a sealing gas throttle without control.

Air cooling

For processes with low gas throughputs and good fore-vacuum pressure, air cooling can be used independently of a water supply. Automatic control through the integrated electronic drive unit of the turbo-pump.

Heating

Heating jackets enable the ultimate pressure to be reached more quickly during process cleaning. Automatic control through the integrated electronic drive unit of the turbopump.

Backing pump control

The electronic drive unit of the turbopump enables useful control of backing pumps. Depending on the backing pump used, different operating modes are available.

Integrated pressure measurement

Evaluation and control by the integrated electronic drive unit, independently of an additional power supply.

13.2 Ordering accessories

Description	Order number
Mounting kit for DN 100 ISO-K to ISO-F, with collar flange, coated centering ring, hexagon bolts	PM 016 940 -T
Mounting kit for DN 100 ISO-K to ISO-F, with collar flange, coated centering ring, stud screws	PM 016 945 -T
Mounting kit for HiPace 300 with DN 100 ISO-K, including coated centering ring and bracket screws	PM 016 365 -T
Mounting kit for DN 100 ISO-F, including coated centering ring, stud screws	PM 016 455 -T
Mounting kit for DN 100 ISO-F, including coated centering ring, hexagon screws	PM 016 450 -T
Hexagon screw set for flanges with through holes, DN 100 CF-F	PM 016 690 -T
Set of stud screws for flanges with through-hole, DN 100 CF-F	PM 016 734 -T

Description	Order number
Set of stud screws for flanges with a threaded hole, DN 100 CF-F	PM 016 866 -T
Vibration damper for HiPace 300/400, DN 100 CF-F	PM 006 488 -X
Vibration damper for HiPace 300/400, DN 100 ISO-K/F	PM 006 459 AX
TPS 180, power supply pack for wall/standard rail installation	PM 061 341 -T
TPS 181, power supply pack 19" plug-in unit 3HU	PM 061 345 -T
Mains cable 230 V AC, CEE 7/7 to C13, 3 m	P 4564 309 ZA
Mains cable 115 V AC, NEMA 5-15 to C13, 3 m	P 4564 309 ZE
Mains cable 208 V AC, NEMA 6-15 to C13, 3 m	P 4564 309 ZF
Connecting cable from 24V/48V power supply pack to electronic drive unit. With RS-485 interface	PM 061 350 -T
Connection cable with RS-485 interface and 2 accessory ports for TC110/120 to power supply pack	PM 061 351 -T
OmniControl 001 Mobile, control units	PE D20 000 0
OmniControl 001, rack unit without integrated power supply pack	PE D40 000 0
OmniControl 200, rack unit with integrated power supply pack	PE D50 000 0
Y-connector M12 for RS-485	P 4723 010
USB RS-485 converter	PM 061 207 -T
Interface cable, M12 m straight / M12 m straight, 3 m	PM 061 283 -T
TIC 010, adapter for two sensors	PT R70 000
TCS 11, adapter for TC 110/120 with RS-485 interface	PM 061 636 -U
TCS 12, adapter for TC 110/120 with interface RS-485, 4 accessory ports and coupling set	PM 061 638 -U
TCS 13, adapter for TC 110/120 with interface RS-485, 2 accessory ports and coupling set	PM 061 856 -U
Connection cable with RS-485 interface and 3 accessory ports for TC110/120 to power supply pack	PM 061 512 -T
Connection cable for HiPace with TC 110/120	PM 061 543 -T
Connection cable incl. 2 accessory ports for TC 110/120 to power supply pack	PM 061 552 -T
Extension cable M8 on M8	PM 061 783 -T
Venting valve, shielded, 24 V DC, G 1/8", for connection to TC 110/120	PM Z01 290
Sealing gas valve, shielded for HiPace 300 with TC 110/120	PM Z01 311
Air cooling, shielded, for HiPace 350/450 with TC 110/120	PM Z01 373
Water cooling for HiPace 350 HiPace 400 HiPace 450 HiPace 700 HiPace 800 with push-in fitting 8 mm	PM 026 068 -T
Water cooling for HiPace 60 P / 80 / 350 / 450 and for SplitFlow 50 / 80 with pushin fitting, 8 mm $$	PM 016 623 -T
Heating sleeve screened, for HiPace 350/450 with TC 110/120, 230 V AC, safety plug	PM 071 700 -T
Heating sleeve, screened, for HiPace 350/450 with TC 110/120, 208 V AC, UL plug	PM 071 701 -T
Heating sleeve, screened, for HiPace 350/450 with TC 110/120, 115 V AC, UL plug	PM 071 702 -T
Relay box, shielded, for backing pumps, 1-phase motor 7A for TC 110/120 and TCP 350, plug M8	PM 071 282 -X
Relay box for backing pumps, 1-phase motor 20 A for TC 110/120 and TCP 350, plug M8	PM 061 373 -T
RPT 010, digital Piezo/Pirani sensor	PT R71 100
IKT 010, digital cold cathode sensor, low current	PT R72 100
IKT 011, digital cold cathode sensor, high current	PT R73 100

Tbl. 15: Accessories

Description	Order number
OmniControl 400, rack unit with integrated power supply pack	PE D70 000 0
TPS 400, power supply pack 48 V DC, for wall/standard rail fitting	PM 061 343 -T
TPS 401, power supply pack 48 V DC, 19" partial plug-in 3HU	PM 061 347 -T

Tbl. 16: Other accessories for TC 120 | 48 V DC

Technical data and dimensions 14

14.1 General

This section describes the basis for the technical data of Pfeiffer Vacuum turbopumps.

Technical data

Maximum values refer exclusively to the input as a single load.

- Specifications according to PNEUROP committee PN5
- ISO 27892 2010:"Vacuum technology Turbomolecular pumps Measurement of rapid shutdown torque"
- ISO 21360 2012: "Vacuum technology Standard methods for measuring vacuum-pump performance - Part 1: General description"
- ISO 21360 2018: "Vacuum technology Standard methods for measuring vacuum-pump performance - Part 4: Turbomolecular vacuum pumps"
- Ultimate pressure with test dome after 48 h bake out duration
- Gas throughput with water cooling; backing pump = rotary vane pump (10 m³/h)
- Cooling water consumption at maximum gas throughput, cooling water temperature 25 °C
- Integral leakage rate with 100 % helium concentration, 10 s measurement duration
- Sound pressure level at distance to vacuum pump = 1 m

	mbar	bar	Pa	hPa	kPa	Torr mm Hg
mbar	1	1 · 10 ⁻³	100	1	0.1	0.75
bar	1000	1	1 · 10 ⁵	1000	100	750
Pa	0.01	1 · 10-5	1	0.01	1 · 10 ⁻³	7.5 · 10 ⁻³
hPa	1	1 · 10 ⁻³	100	1	0.1	0.75
kPa	10	0.01	1000	10	1	7.5
Torr mm Hg	1.33	1.33 · 10 ⁻³	133.32	1.33	0.133	1

 $1 \text{ Pa} = 1 \text{ N/m}^2$

Tbl. 17: Conversion table: Pressure units

	mbar I/s	Pa m³/s	sccm	Torr I/s	atm cm ³ /s
mbar l/s	1	0.1	59.2	0.75	0.987
Pa m ³ /s	10	1	592	7.5	9.87
sccm	1.69 · 10 ⁻²	1.69 · 10 ⁻³	1	1.27 · 10 ⁻²	1.67 · 10 ⁻²
Torr I/s	1.33	0.133	78.9	1	1.32
atm cm ³ /s	1.01	0.101	59.8	0.76	1

Tbl. 18: Conversion table: Units for gas throughput

14.2 Technical data

Selection field	HiPace® 350 with TC 110, DN 100 ISO-K	HiPace® 350 with TC 110, DN 100 CF-F
Connection flange (in)	DN 100 ISO-K	DN 100 CF-F
Connection flange (out)	DN 16 ISO-KF / G 3/8"	DN 16 ISO-KF / G 3/8"
Rotation speed ± 2 %	66000 rpm	66000 rpm
Rotation speed variable	60 – 100 %	60 – 100 %
Run-up time	5.3 min	5.3 min
Final pressure	1 · 10 ⁻⁷ hPa	5 · 10 ⁻¹⁰ hPa
Pumping speed for Ar	270 l/s	270 l/s

Selection field	HiPace® 350 with TC 110, DN 100 ISO-K	HiPace® 350 with TC 110, DN 100 CF-F
Pumping speed for H ₂	300 l/s	300 l/s
Pumping speed for He	350 l/s	350 l/s
Pumping speed for N ₂	300 l/s	300 l/s
Gas throughput at final rotation speed for Ar	0.7 mbar l/s	0.7 mbar l/s
Gas throughput at final rotation speed for H ₂	11 mbar l/s	11 mbar l/s
Gas throughput at final rotation speed for He	7 mbar l/s	7 mbar l/s
Gas throughput at final rotation speed for N ₂	2 mbar l/s	2 mbar l/s
Compression ratio for Ar	> 1 · 10 ¹¹	> 1 · 10 ¹¹
Compression ratio for H ₂	2 · 106	2 · 106
Compression ratio for He	> 1 · 10 ⁸	> 1 · 108
Compression ratio for N ₂	> 1 · 10 ¹¹	> 1 · 10 ¹¹
Fore-vacuum max. for N ₂	10 mbar	10 mbar
Fore-vacuum max. for H ₂	6 mbar	6 mbar
Fore-vacuum max. for Ar	10 mbar	10 mbar
Fore-vacuum max. for He	10 mbar	10 mbar
Electronic drive unit	TC 110	TC 110
Operating voltage: DC	24 V	24 V
Input voltage: tolerance	±10 %	±10 %
Current, max.	7.5 A	7.5 A
Power consumption max.	180 W	180 W
I/O interfaces	RS-485, Remote	RS-485, Remote
Performance curve in gas mode 0, vertex C	90/66000 W/min ⁻¹	90/66000 W/min ⁻¹
Performance curve in gas mode 0, vertex D	100/60000 W/min ⁻¹	100/60000 W/min ⁻¹
Performance curve in gas mode 1, vertex A	110/66000 W/min ⁻¹	110/66000 W/min ⁻¹
Performance curve in gas mode 1, vertex B	130/60000 W/min ⁻¹	130/60000 W/min ⁻¹
Performance curve in gas mode 2, vertex E	150/66000 W/min ⁻¹	150/66000 W/min ⁻¹
Performance curve in gas mode 2, vertex F	150/60000 W/min ⁻¹	150/60000 W/min ⁻¹
Mounting orientation	Arbitrary	Arbitrary
Bearing	Hybrid	Hybrid
Cooling method	Convection	Convection
Cooling method, optional	Air, Water	Air, Water
Cooling water flow	100 l/h	100 l/h
Cooling water temperature	15 – 25 °C	15 – 25 °C
Relative humidity of air	5 – 85 %	5 – 85 %
Shipping and storage temperature	-20 – 55 °C	-20 – 55 °C
Venting connection	G 1/8"	G 1/8"
Max. connection pressure (abs.) for venting/ sealing gas valve	1500 hPa	1500 hPa
Protection degree	IP44, Type 12	IP44, Type 12
Sound pressure level	≤50 dB(A)	≤50 dB(A)
Integral leak rate	1 · 10 ⁻⁷ mbar l/s	1 · 10 ⁻⁷ mbar l/s
Permissible radial magnetic field max.	4.5 mT	4.5 mT
Permissible axial magnetic field max.	20 mT	20 mT
Weight	7.2 kg	10 kg

Tbl. 19: Technical data for HiPace 350 | TC 110

Selection field	HiPace® 350 with TC 120, DN 100 ISO-K	HiPace® 350 with TC 120, DN 100 CF-F
Connection flange (in)	DN 100 ISO-K	DN 100 CF-F
Connection flange (out)	DN 16 ISO-KF / G 3/8"	DN 16 ISO-KF / G 3/8"
Rotation speed ± 2 %	66000 rpm	66000 rpm
Rotation speed variable	60 – 100 %	60 – 100 %
Run-up time	4 min	4 min
Final pressure	1 · 10 ⁻⁷ hPa	5 · 10 ⁻¹⁰ hPa
Pumping speed for Ar	270 l/s	270 l/s
Pumping speed for H ₂	300 l/s	300 l/s
Pumping speed for He	350 l/s	350 l/s
Pumping speed for N ₂	300 l/s	300 l/s
Gas throughput at final rotation speed for Ar	0.7 mbar l/s	0.7 mbar l/s
Gas throughput at final rotation speed for H ₂	11 mbar l/s	11 mbar l/s
Gas throughput at final rotation speed for He	7 mbar l/s	7 mbar l/s
Gas throughput at final rotation speed for N ₂	2 mbar l/s	2 mbar l/s
Compression ratio for Ar	> 1 · 10 ¹¹	> 1 · 10 ¹¹
Compression ratio for H ₂	2 · 106	2 · 106
Compression ratio for He	> 1 · 108	> 1 · 108
Compression ratio for N ₂	> 1 · 10 ¹¹	> 1 · 10 ¹¹
Fore-vacuum max. for N ₂	10 mbar	10 mbar
Fore-vacuum max. for H ₂	6 mbar	6 mbar
Fore-vacuum max. for Ar	10 mbar	10 mbar
	10 mbar	10 mbar
Fore-vacuum max. for He Electronic drive unit	TC 120	TC 120
Operating voltage: DC	48 V	48 V
Input voltage: tolerance	±10 %	±10 %
Current, max.	3,75 A	3.75 A
Power consumption max.	180 W	180 W
I/O interfaces	RS-485, Remote	RS-485, Remote
Performance curve in gas mode 0, vertex C	90/66000 W/min ⁻¹	90/66000 W/min ⁻¹
Performance curve in gas mode 0, vertex D	100/60000 W/min ⁻¹	100/60000 W/min ⁻¹
Performance curve in gas mode 1, vertex A	110/66000 W/min ⁻¹	110/66000 W/min ⁻¹
<u> </u>		
Performance curve in gas mode 1, vertex B	130/60000 W/min ⁻¹	130/60000 W/min ⁻¹
Performance curve in gas mode 2, vertex E	150/66000 W/min ⁻¹	150/66000 W/min ⁻¹
Performance curve in gas mode 2, vertex F	150/60000 W/min ⁻¹	150/60000 W/min ⁻¹
Mounting orientation	Arbitrary	Arbitrary
Bearing	Hybrid	Hybrid
Cooling method	Convection	Convection
Cooling method, optional	Air, Water	Air, Water
Cooling water flow	100 l/h	100 l/h
Cooling water temperature	15 – 25 °C 5 – 85 %	15 – 25 °C
Relative humidity of air	5 – 85 % -20 – 55 °C	5 – 85 % -20 – 55 °C
Shipping and storage temperature	G 1/8"	-20 – 55 °C
Venting connection	1500 hPa	1500 hPa
Max. connection pressure (abs.) for venting/ sealing gas valve		
Protection degree	IP44, Type 12	IP44, Type 12
Sound pressure level	≤50 dB(A)	≤50 dB(A)
Integral leak rate	1 · 10 ⁻⁷ mbar l/s	1 · 10 ⁻⁷ mbar l/s

Selection field	HiPace® 350 with TC 120, DN 100 ISO-K	HiPace® 350 with TC 120, DN 100 CF-F
Permissible radial magnetic field max.	4.5 mT	4.5 mT
Permissible axial magnetic field max.	20 mT	20 mT
Weight	7.2 kg	10 kg

Tbl. 20: Technical data for HiPace 350 | TC 120

14.3 Characteristics

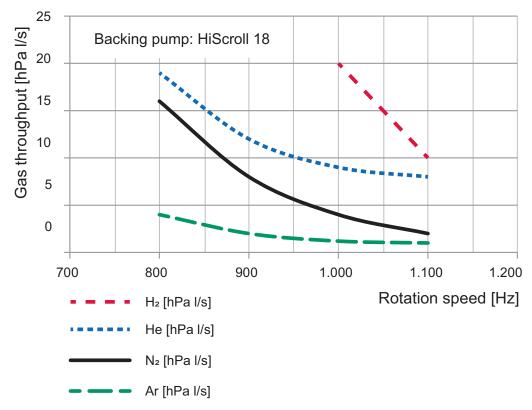


Fig. 21: Gas throughput characteristic depending on the rotation speed

14.4 Substances in contact with the media

Substances in contact with the media
Aluminum alloy
Stainless steel
Rare-earth magnets
Carbon-fiber-reinforced plastic
Epoxy resin
FKM
Nickel
-elt

Substances in contact with the media

Operating fluid (ester oil)

Oxide ceramic, as required

Tbl. 21: Materials that make contact with the process media

14.5 Dimensions

Dimensions in mm

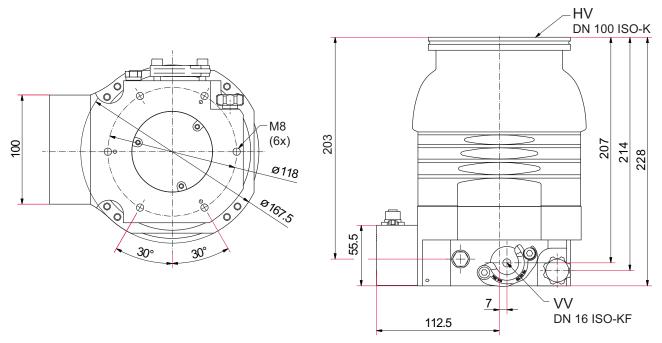


Fig. 22: HiPace 350 | DN 100 ISO-K

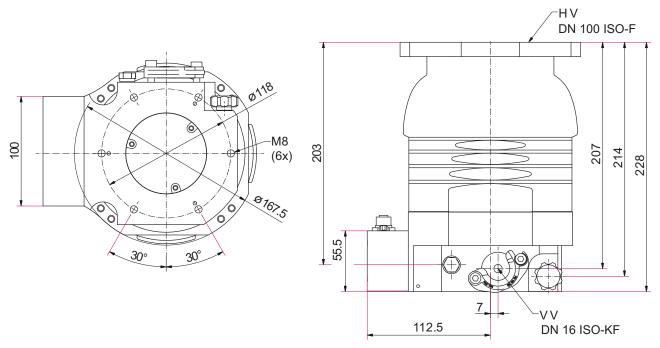


Fig. 23: HiPace 350 | DN 100 ISO-F

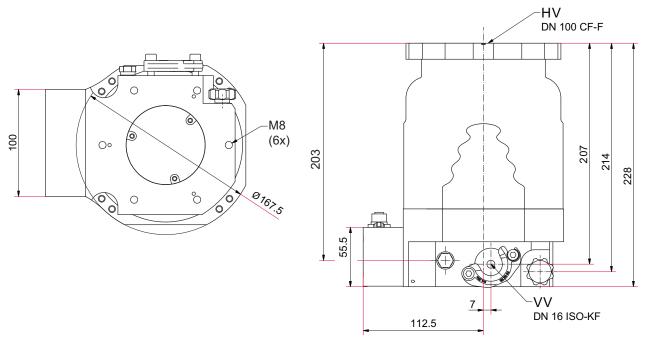


Fig. 24: HiPace 350 | DN 100 CF-F

EC Declaration of Conformity

This declaration of conformity has been issued under the sole responsibility of the manufacturer.

Declaration for product(s) of the type:

Turbopump

HiPace 350

We hereby declare that the listed product satisfies all relevant provisions of the following **European Directives**.

- Machinery 2006/42/EC (Annex II, no. 1 A)
- Electromagnetic compatibility 2014/30/EU
- Restriction of the use of certain hazardous substances 2011/65/EU
- Restriction of the use of certain hazardous substances, delegated directive 2015/863/EU

Harmonized standards and applied national standards and specifications:

DIN EN ISO 12100 : 2011

DIN EN 61326-1 : 2013

DIN EN 1012-2 : 2011

DIN EN 62061 : 2016

DIN EN 61000-3-2 : 2019

DIN EN 61000-3-3 : 2020

DIN EN 61010-1 : 2020

DIN EN 61010-1 : 2020

DIN EN 61010-1 : 2020

The authorized representative for the compilation of technical documents is Mr. Tobias Stoll, Pfeiffer Vacuum GmbH, Berliner Straße 43, 35614 Asslar, Germany.

Signature:

Pfeiffer Vacuum GmbH Berliner Straße 43 35614 Asslar Germany

(Daniel Sälzer)

Managing Director

Asslar, 2022-11-07

UK Declaration of Conformity

This declaration of conformity has been issued under the sole responsibility of the manufacturer.

Declaration for product(s) of the type:

Turbopump

HiPace 350

We hereby declare that the listed product satisfies all relevant provisions of the following **British Directives**.

Supply of Machinery (Safety) Regulations 2008

Electromagnetic Compatibility Regulations 2016

The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012

Applied standards and specifications:

ISO 12100:2010 IEC 61326-1:2012
EN 1012-2+A1:1996 IEC 62061:2005
IEC 61000-3-2:2018 ISO 21360-1:2020
IEC 61000-3-3+A1:2013 ISO 21360-4:2018
IEC 61010-1+A1:2010 IEC 63000:2018

The manufacturer's authorized representative in the United Kingdom and the authorized agent for compiling the technical documentation is Pfeiffer Vacuum Ltd, 16 Plover Close, Interchange Park, MK169PS Newport Pagnell.

Signature:

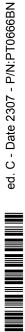
Pfeiffer Vacuum GmbH Berliner Straße 43 35614 Asslar Germany

(Daniel Sälzer) Asslar, 2022-11-07

Managing Director

VACUUM SOLUTIONS FROM A SINGLE SOURCE

Pfeiffer Vacuum stands for innovative and custom vacuum solutions worldwide, technological perfection, competent advice and reliable service.


COMPLETE RANGE OF PRODUCTS

From a single component to complex systems:

We are the only supplier of vacuum technology that provides a complete product portfolio.

COMPETENCE IN THEORY AND PRACTICE

Benefit from our know-how and our portfolio of training opportunities! We support you with your plant layout and provide first-class on-site service worldwide.

Are you looking for a perfect vacuum solution? Please contact us

Pfeiffer Vacuum GmbH Headquarters • Germany T +49 6441 802-0 info@pfeiffer-vacuum.de

www.pfeiffer-vacuum.com

